226 research outputs found

    Electrochemical studies in aluminum chloride melts Semiannual status report, 15 Aug. 1970 - 14 Feb. 1971

    Get PDF
    Experimental and computerized electrochemical measurements in fused sodium aluminum chloride

    Electrochemical studies in aluminum chloride melts

    Get PDF
    A melt purification system was developed which produces a final melt far superior electrochemically than those previously reported. A residual current of less than 2 microamps/sq mn at a sweep rate of 0.5 V/sec was used as the criteria for a pure melt. The use of a second purified bulk melt and a heated pipette permitted the rapid exchange of working electrode compartments while retaining the same reference electrode system. The major portion of the work was carried out in the 1:1 AlCl3:NaCl melt at 175 and 200 C. Several measurements were made in the 2:1 melt and a few on the silver systems in intermediate compositions. Programs for PDP-8I and PDP-12 digital computers and the required electronic circuitry systems were developed to carry out various electrochemical measurements in the melt. A pair of 50 yard transmission lines were used to connect the computer to the experiment. Ensemble averaging and digital, least squares smoothing are used within the programs to improve the signal-to-noise ratio by at least an order of magnitude. Some of the computerized electrochemcial techniques used to examine the different systems were pulse polarography, double pulse polarography, staircase voltammetry, kinetic double potential step chronoamperometry and double potential step chronocoulometry

    Formal Reduction Potential of 3,5-Difluorotyrosine in a Structured Protein: Insight into Multistep Radical Transfer

    Get PDF
    The reversible Y–O•/Y–OH redox properties of the α[subscript 3]Y model protein allow access to the electrochemical and thermodynamic properties of 3,5-difluorotyrosine. The unnatural amino acid has been incorporated at position 32, the dedicated radical site in α[subscript 3]Y, by in vivo nonsense codon suppression. Incorporation of 3,5-difluorotyrosine gives rise to very minor structural changes in the protein scaffold at pH values below the apparent pK (8.0 ± 0.1) of the unnatural residue. Square-wave voltammetry on α[subscript 3](3,5)F[subscript 2]Y provides an E°′(Y–O•/Y–OH) of 1026 ± 4 mV versus the normal hydrogen electrode (pH 5.70 ± 0.02) and shows that the fluoro substitutions lower the E°′ by −30 ± 3 mV. These results illustrate the utility of combining the optimized α[subscript 3]Y tyrosine radical system with in vivo nonsense codon suppression to obtain the formal reduction potential of an unnatural aromatic residue residing within a well-structured protein. It is further observed that the protein E°′ values differ significantly from peak potentials derived from irreversible voltammograms of the corresponding aqueous species. This is notable because solution potentials have been the main thermodynamic data available for amino acid radicals. The findings in this paper are discussed relative to recent mechanistic studies of the multistep radical-transfer process in Escherichia coli ribonucleotide reductase site-specifically labeled with unnatural tyrosine residues.National Institutes of Health (U.S.) (Grant GM29595

    Broadband Coupling into a Single-Mode, Electroactive Integrated Optical Waveguide for Spectroelectrochemical Analysis of Surface-Confined Redox Couples

    Get PDF
    Pushing the sensitivity of spectroelectrochemical techniques to routinely monitor changes in spectral properties of thin molecular films (i.e., monolayer or submonolayer) adsorbed on an electrode surface has been a goal of many investigators since the earliest developments in this field. 1 It was initially recognized that exploiting the evanescent field generated by total internal reflection at the interface of an optically transparent electrode (such as a thin film of tin oxide or indium tin oxide (ITO) on glass or quartz) has the inherent advantage of selectively probing only the near-surface region, as opposed to bulk sampling with transmission based techniques. Furthermore, by utilizing the multiple reflections in an attenuated total reflectance (ATR) geometry, an enhancement in sensitivity can be realized, and as the thickness of the ATR element is decreased, the number of reflections increases, yielding a substantial sensitivity enhancement. [2][3][4][5][6] Itoh and Fujishima were the first to show the advantages of reducing the thickness of an ATR element overcoated with a transparent conductive oxide to the integrated optical waveguide (IOW) regime. Using a four-mode, gradient index waveguide coated with a transparent, conductive tin oxide layer, they demonstrated large sensitivity enhancements, relative to a single pass transmission experiment, for spectroelectrochemical measurements of methylene blue. 7,8 Other research groups subsequently described similar gradient index, multilayer, electroactive waveguide structures, but they did not make use of the technology to explore the spectroelectrochemistry of (sub)monolayer coverage films. [9][10][11][12][13] We recently described a single-mode, electroactive planar IOW (the EA-IOW) having a step refractive index profile. It was fabricated by sputtering a Corning 7059 glass layer (400 nm) over soda lime glass or quartz, followed by a 200-nm layer of SiO 2

    The Bacterium Endosymbiont of Crithidia deanei Undergoes Coordinated Division with the Host Cell Nucleus

    Get PDF
    In trypanosomatids, cell division involves morphological changes and requires coordinated replication and segregation of the nucleus, kinetoplast and flagellum. In endosymbiont-containing trypanosomatids, like Crithidia deanei, this process is more complex, as each daughter cell contains only a single symbiotic bacterium, indicating that the prokaryote must replicate synchronically with the host protozoan. In this study, we used light and electron microscopy combined with three-dimensional reconstruction approaches to observe the endosymbiont shape and division during C. deanei cell cycle. We found that the bacterium replicates before the basal body and kinetoplast segregations and that the nucleus is the last organelle to divide, before cytokinesis. In addition, the endosymbiont is usually found close to the host cell nucleus, presenting different shapes during the protozoan cell cycle. Considering that the endosymbiosis in trypanosomatids is a mutualistic relationship, which resembles organelle acquisition during evolution, these findings establish an excellent model for the understanding of mechanisms related with the establishment of organelles in eukaryotic cells

    The Cytosolic Domain of Fis1 Binds and Reversibly Clusters Lipid Vesicles

    Get PDF
    Every lipid membrane fission event involves the association of two apposing bilayers, mediated by proteins that can promote membrane curvature, fusion and fission. We tested the hypothesis that Fis1, a tail-anchored protein involved in mitochondrial and peroxisomal fission, promotes changes in membrane structure. We found that the cytosolic domain of Fis1 alone binds lipid vesicles, which is enhanced upon protonation and increasing concentrations of anionic phospholipids. Fluorescence and circular dichroism data indicate that the cytosolic domain undergoes a membrane-induced conformational change that buries two tryptophan side chains upon membrane binding. Light scattering and electron microscopy data show that membrane binding promotes lipid vesicle clustering. Remarkably, this vesicle clustering is reversible and vesicles largely retain their original shape and size. This raises the possibility that the Fis1 cytosolic domain might act in membrane fission by promoting a reversible membrane association, a necessary step in membrane fission

    Varieties of living things: Life at the intersection of lineage and metabolism

    Get PDF
    publication-status: Publishedtypes: Articl
    corecore