1,353 research outputs found

    Large Deviations of the Smallest Eigenvalue of the Wishart-Laguerre Ensemble

    Full text link
    We consider the large deviations of the smallest eigenvalue of the Wishart-Laguerre Ensemble. Using the Coulomb gas picture we obtain rate functions for the large fluctuations to the left and the right of the hard edge. Our findings are compared with known exact results for ÎČ=1\beta=1 finding good agreement. We also consider the case of almost square matrices finding new universal rate functions describing large fluctuations.Comment: 4 pages, 2 figure

    Kepler Transit Depths Contaminated by a Phantom Star

    Full text link
    We present ground-based observations from the Discovery Channel Telescope (DCT) of three transits of Kepler-445c---a supposed super-Earth exoplanet with properties resembling GJ 1214b---and demonstrate that the transit depth is approximately 50 percent shallower than the depth previously inferred from Kepler Spacecraft data. The resulting decrease in planetary radius significantly alters the interpretation of the exoplanet's bulk composition. Despite the faintness of the M4 dwarf host star, our ground-based photometry clearly recovers each transit and achieves repeatable 1-sigma precision of approximately 0.2 percent (2 millimags). The transit parameters estimated from the DCT data are discrepant with those inferred from the Kepler data to at least 17-sigma confidence. This inconsistency is due to a subtle miscalculation of the stellar crowding metric during the Kepler pre-search data conditioning (PDC). The crowding metric, or CROWDSAP, is contaminated by a non-existent "phantom star" originating in the USNO-B1 catalog and inherited by the Kepler Input Catalog (KIC). Phantom stars in the KIC are likely rare, but they have the potential to affect statistical studies of Kepler targets that use the PDC transit depths for a large number of exoplanets where individual follow-up observation of each is not possible. The miscalculation of Kepler-445c's transit depth emphasizes the importance of stellar crowding in the Kepler data, and provides a cautionary tale for the analysis of data from the Transiting Exoplanet Survey Satellite (TESS), which will have even larger pixels than Kepler.Comment: 11 pages, 10 figures, 5 tables. Accepted for publication in AJ. Transit light curves will be available from AJ as Db

    Quantum Phase Transitions in Anti-ferromagnetic Planar Cubic Lattices

    Full text link
    Motivated by its relation to an NP\cal{NP}-hard problem, we analyze the ground state properties of anti-ferromagnetic Ising-spin networks embedded on planar cubic lattices, under the action of homogeneous transverse and longitudinal magnetic fields. This model exhibits a quantum phase transition at critical values of the magnetic field, which can be identified by the entanglement behavior, as well as by a Majorization analysis. The scaling of the entanglement in the critical region is in agreement with the area law, indicating that even simple systems can support large amounts of quantum correlations. We study the scaling behavior of low-lying energy gaps for a restricted set of geometries, and find that even in this simplified case, it is impossible to predict the asymptotic behavior, with the data allowing equally good fits to exponential and power law decays. We can therefore, draw no conclusion as to the algorithmic complexity of a quantum adiabatic ground-state search for the system.Comment: 7 pages, 13 figures, final version (accepted for publication in PRA

    Magnetic inflation and stellar mass. V. Intensification and saturation of M-dwarf absorption lines with Rossby number

    Get PDF
    In young Sun-like stars and field M-dwarf stars, chromospheric and coronal magnetic activity indicators such as Hα, X-ray, and radio emission are known to saturate with low Rossby number (Ro lesssim 0.1), defined as the ratio of rotation period to convective turnover time. The mechanism for the saturation is unclear. In this paper, we use photospheric Ti i and Ca i absorption lines in the Y band to investigate magnetic field strength in M dwarfs for Rossby numbers between 0.01 and 1.0. The equivalent widths of the lines are magnetically enhanced by photospheric spots, a global field, or a combination of the two. The equivalent widths behave qualitatively similar to the chromospheric and coronal indicators: we see increasing equivalent widths (increasing absorption) with decreasing Ro and saturation of the equivalent widths for Ro lesssim 0.1. The majority of M dwarfs in this study are fully convective. The results add to mounting evidence that the magnetic saturation mechanism occurs at or beneath the stellar photosphere.Published versio

    The Majorization Arrow in Quantum Algorithm Design

    Get PDF
    We apply majorization theory to study the quantum algorithms known so far and find that there is a majorization principle underlying the way they operate. Grover's algorithm is a neat instance of this principle where majorization works step by step until the optimal target state is found. Extensions of this situation are also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation algorithms, including Shor's algorithm. We state that in quantum algorithms the time arrow is a majorization arrow.Comment: REVTEX4.b4 file, 4 color figures (typos corrected.

    A Gyrochronology and Microvariability Survey of the Milky Way's Older Stars Using Kepler's Two-Wheels Program

    Full text link
    Even with the diminished precision possible with only two reaction wheels, the Kepler spacecraft can obtain mmag level, time-resolved photometry of tens of thousands of sources. The presence of such a rich, large data set could be transformative for stellar astronomy. In this white paper, we discuss how rotation periods for a large ensemble of single and binary main- sequence dwarfs can yield a quantitative understanding of the evolution of stellar spin-down over time. This will allow us to calibrate rotation-based ages beyond ~1 Gyr, which is the oldest benchmark that exists today apart from the Sun. Measurement of rotation periods of M dwarfs past the fully-convective boundary will enable extension of gyrochronology to the end of the stellar main-sequence, yielding precise ages ({\sigma} ~10%) for the vast majority of nearby stars. It will also help set constraints on the angular momentum evolution and magnetic field generation in these stars. Our Kepler-based study would be supported by a suite of ongoing and future ground-based observations. Finally, we briefly discuss two ancillary science cases, detection of long-period low-mass eclipsing binaries and microvariability in white dwarfs and hot subdwarf B stars that the Kepler Two-Wheels Program would facilitate.Comment: Kepler white pape

    Friends of Hot Jupiters II: No Correspondence Between Hot-Jupiter Spin-Orbit Misalignment and the Incidence of Directly Imaged Stellar Companions

    Get PDF
    Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters towards to their present day positions. Many observed short period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short period gas giant planets found in multi-star systems. Over three years, we completed a survey of 50 targets ("Friends of Hot Jupiters") with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions found around 17 stars. Correcting for survey incompleteness, we report companion fractions of 48%±9%48\%\pm9\%, 47%±12%47\%\pm12\%, and 51%±13%51\%\pm13\% in our total, misaligned/eccentric, and control samples, respectively. This total stellar companion fraction is 2.8 σ2.8\,\sigma larger than the fraction of field stars with companions approximately 50−2000 50-2000\,AU. We observe no correlation between misaligned/eccentric hot Jupiter systems and the incidence of stellar companions. Combining this result with our previous radial velocity survey, we determine that 72%±16%72\% \pm 16\% of hot Jupiters are part of multi-planet and/or multi-star systems.Comment: typos and references updated; 25 pages, 7 figures and 10 tables, accepted for publication in Ap

    M-Dwarf Fast Rotators and the Detection of Relatively Young Multiple M-Star Systems

    Get PDF
    We have searched the Kepler light curves of ~3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, 'sonograms', and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P_rot, of < 2 days, and 110 with P_rot < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have three or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star systems. We explore in detail the one object with four incommensurate periods all less than 1.2 days, and show that two of the periods arise from one of a close pair of stars, while the other two arise from the second star, which itself is probably a visual binary. If most of these M-star systems with multiple periods turn out to be bound M stars, this could prove a valuable way of discovering young hierarchical M-star systems; the same approach may also be applicable to G and K stars. The ~5% occurrence rate of rapid rotation among the ~3900 M star targets is consistent with spin evolution models that include an initial contraction phase followed by magnetic braking, wherein a typical M star can spend several hundred Myr before spinning down to periods longer than 2 days.Comment: 17 pages, 12 figures, 2 tables; accepted for publication in The Astrophysical Journa
    • 

    corecore