14,164 research outputs found

    Evolution of Privacy Loss in Wikipedia

    Full text link
    The cumulative effect of collective online participation has an important and adverse impact on individual privacy. As an online system evolves over time, new digital traces of individual behavior may uncover previously hidden statistical links between an individual's past actions and her private traits. To quantify this effect, we analyze the evolution of individual privacy loss by studying the edit history of Wikipedia over 13 years, including more than 117,523 different users performing 188,805,088 edits. We trace each Wikipedia's contributor using apparently harmless features, such as the number of edits performed on predefined broad categories in a given time period (e.g. Mathematics, Culture or Nature). We show that even at this unspecific level of behavior description, it is possible to use off-the-shelf machine learning algorithms to uncover usually undisclosed personal traits, such as gender, religion or education. We provide empirical evidence that the prediction accuracy for almost all private traits consistently improves over time. Surprisingly, the prediction performance for users who stopped editing after a given time still improves. The activities performed by new users seem to have contributed more to this effect than additional activities from existing (but still active) users. Insights from this work should help users, system designers, and policy makers understand and make long-term design choices in online content creation systems

    Black-Hole-Wave Duality in String Theory

    Get PDF
    Extreme 4-dimensional dilaton black holes embedded into 10-dimensional geometry are shown to be dual to the gravitational waves in string theory. The corresponding gravitational waves are the generalization of pp-fronted waves, called supersymmetric string waves. They are given by Brinkmann metric and the two-form field, without a dilaton. The non-diagonal part of the metric of the dual partner of the wave together with the two-form field correspond to the vector field in 4-dimensional geometry of the charged extreme black holes.Comment: 12 pages, LaTeX, preprint UG-3/94, SU-ITP-94-11, QMW-PH-94-1

    Topology, Entropy and Witten Index of Dilaton Black Holes

    Full text link
    We have found that for extreme dilaton black holes an inner boundary must be introduced in addition to the outer boundary to give an integer value to the Euler number. The resulting manifolds have (if one identifies imaginary time) topology S1×R×S2S^1 \times R \times S^2 and Euler number χ=0\chi = 0 in contrast to the non-extreme case with χ=2\chi=2. The entropy of extreme U(1)U(1) dilaton black holes is already known to be zero. We include a review of some recent ideas due to Hawking on the Reissner-Nordstr\"om case. By regarding all extreme black holes as having an inner boundary, we conclude that the entropy of {\sl all} extreme black holes, including [U(1)]2[U(1)]^2 black holes, vanishes. We discuss the relevance of this to the vanishing of quantum corrections and the idea that the functional integral for extreme holes gives a Witten Index. We have studied also the topology of ``moduli space'' of multi black holes. The quantum mechanics on black hole moduli spaces is expected to be supersymmetric despite the fact that they are not HyperK\"ahler since the corresponding geometry has torsion unlike the BPS monopole case. Finally, we describe the possibility of extreme black hole fission for states with an energy gap. The energy released, as a proportion of the initial rest mass, during the decay of an electro-magnetic black hole is 300 times greater than that released by the fission of an 235U{}^{235} U nucleus.Comment: 51 pages, 4 figures, LaTeX. Considerably extended version. New sections include discussion of the Witten index, topology of the moduli space, black hole sigma model, and black hole fission with huge energy releas

    Sato-Crutchfield formulation for some Evolutionary Games

    Full text link
    The Sato-Crutchfield equations are studied analytically and numerically. The Sato-Crutchfield formulation is corresponding to losing memory. Then Sato-Crutchfield formulation is applied for some different types of games including hawk-dove, prisoner's dilemma and the battle of the sexes games. The Sato-Crutchfield formulation is found not to affect the evolutionarily stable strategy of the ordinary games. But choosing a strategy becomes purely random independent on the previous experiences, initial conditions, and the rules of the game itself. Sato-Crutchfield formulation for the prisoner's dilemma game can be considered as a theoretical explanation for the existence of cooperation in a population of defectors.Comment: 9 pages, 3 figures, accepted for Int. J. Mod. Phys.

    Fixed Scalars and Suppression of Hawking Evaporation

    Get PDF
    For an extreme charged black hole some scalars take on a fixed value at the horizon determined by the charges alone. We call them fixed scalars. We find the absorption cross section for a low frequency wave of a fixed scalar to be proportional to the square of the frequency. This implies a strong suppression of the Hawking radiation near extremality. We compute the coefficient of proportionality for a specific model.Comment: 10 pages, late

    Superconducting p-branes and Extremal Black Holes

    Get PDF
    In Einstein-Maxwell theory, magnetic flux lines are `expelled' from a black hole as extremality is approached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus, extremal black holes are found to exhibit the sort of `Meissner effect' which is characteristic of superconducting media. We review some of the evidence for this effect, and do present new evidence for it using recently found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions, which arise naturally in string theory, which are non-superconducting extremal black holes. We present a nice geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic objects in string theory (such as p-branes) can also display superconducting properties. In particular, we argue that the relativistic London equation will hold on the worldvolume of `light' superconducting p-branes (which are embedded in flat space), and that minimally coupled zero modes will propagate in the adS factor of the near-horizon geometries of `heavy', or gravitating, superconducting p-branes.Comment: 22 pages, 2 figure

    Rotating Black Holes which Saturate a Bogomol'nyi Bound

    Get PDF
    We construct and study the electrically charged, rotating black hole solution in heterotic string theory compactified on a (10D)(10-D) dimensional torus. This black hole is characterized by its mass, angular momentum, and a (362D)(36-2D) dimensional electric charge vector. One of the novel features of this solution is that for D>5D >5, its extremal limit saturates the Bogomol'nyi bound. This is in contrast with the D=4D=4 case where the rotating black hole solution develops a naked singularity before the Bogomol'nyi bound is reached. The extremal black holes can be superposed, and by taking a periodic array in D>5D>5, one obtains effectively four dimensional solutions without naked singularities.Comment: 13 pages, no figure

    Higher Order Correction to the GHS String Black Hole

    Full text link
    We study the order α\alpha' correction to the string black hole found by Garfinkle, Horowitz, and Strominger. We include all operators of dimension up to four in the Lagrangian, and use the field redefinition technique which facilitates the analysis. A mass correction, which is implied by the work of Giddings, Polchinski, and Strominger, is found for the extremal GHS black hole.Comment: 14 pages, LaTeX, NSF-ITP-94-6

    Non-Abelian pp-waves in D=4 supergravity theories

    Full text link
    The non-Abelian plane waves, first found in flat spacetime by Coleman and subsequently generalized to give pp-waves in Einstein-Yang-Mills theory, are shown to be 1/2 supersymmetric solutions of a wide variety of N=1 supergravity theories coupled to scalar and vector multiplets, including the theory of SU(2) Yang-Mills coupled to an axion \sigma and dilaton \phi recently obtained as the reduction to four-dimensions of the six-dimensional Salam-Sezgin model. In this latter case they provide the most general supersymmetric solution. Passing to the Riemannian formulation of this theory we show that the most general supersymmetric solution may be constructed starting from a self-dual Yang-Mills connection on a self-dual metric and solving a Poisson equation for e^\phi. We also present the generalization of these solutions to non-Abelian AdS pp-waves which allow a negative cosmological constant and preserve 1/4 of supersymmetry.Comment: Latex, 1+12 page
    corecore