235 research outputs found

    Correspondence between Electro-Magnetic Field and other Dark Energies in Non-linear Electrodynamics

    Full text link
    In this work, we have considered the flat FRW model of the universe filled with electro-magnetic field. First, the Maxwell's electro-magnetic field in linear form has been discussed and after that the modified Lagrangian in non-linear form for accelerated universe has been considered. The corresponding energy density and pressure for non-linear electro-magnetic field have been calculated. We have found the condition such that the electro-magnetic field generates dark energy. The correspondence between the electro-magnetic field and the other dark energy candidates namely tachyonic field, DBI-essence, Chaplygin gas, hessence dark energy, k-essenece and dilaton dark energy have been investigated. We have also reconstructed the potential functions and the scalar fields in this scenario.Comment: 11 pages, 7 figure

    The Rotation Of The Deep Solar Layers

    Full text link
    From the analysis of low-order GOLF+MDI sectoral modes and LOWL data (l > 3), we derive the solar radial rotation profile assuming no latitudinal dependance in the solar core. These low-order acoustic modes contain the most statistically significant information about rotation of the deepest solar layers and should be least influenced by internal variability associated with the solar dynamo. After correction of the sectoral splittings for their contamination by the rotation of the higher latitudes, we obtain a flat rotation profile down to 0.2 solar radius.Comment: accepted in ApJ Letters 5 pages, 2 figure

    Detection of reactive ions in the ultracompact HII regions Mon R2 and G29.96-0.02

    Full text link
    We report the first detection of the reactive ions CO+ and HOC+ towards ultracompact (UC) HII regions, particularly in Mon R2 and G29.96-0.02. We have observed two positions in Mon R2, namely the peak of the UC HII region and a position in the high density molecular cloud which bounds it. CO+ and HOC+ were detected at the UC HII region but not at the molecular cloud, as expected if the CO+^+ and HOC+^+ emissions arise in the PDR surrounding the \uch. The measured CO+^+ and HOC+^+ column densities are of the order of 1011^{11} cm2^{-2} in both sources, which yields a strikingly low [HCO+^+]/[HOC+^+] abundance ratio of 460 in Mon R2. These values are similar to those found in some other well-known PDRs, like NGC 7023 and the Orion Bar. We briefly discuss the chemical implications of these results.Comment: 10 pages, 3 figures. Accepted by Astrophysical Journal Letter

    Efficacy of capacitive resistive monopolar radiofrequency in the physiotherapeutic treatment of chronic pelvic pain syndrome : study protocol for a randomized controlled trial

    Get PDF
    Chronic pelvic pain syndrome (CPPS) is a multifactorial disorder that affects 5.7% to 26.6% of women and 2.2% to 9.7% of men, characterized by hypersensitivity of the central and peripheral nervous system affecting bladder and genital function. People with CPPS have much higher rates of psychological disorders (anxiety, depression, and catastrophizing) that increase the severity of chronic pain and worsen quality of life. Myofascial therapy, manual therapy, and treatment of trigger points are proven therapeutic options for this syndrome. This study aims to evaluate the efficacy of capacitive resistive monopolar radiofrequency (CRMRF) at 448kHz as an adjunct treatment to other physiotherapeutic techniques for reducing pain and improving the quality of life of patients with CPPS. This triple-blind (1:1) randomized controlled trial will include 80 women and men with CPPS. Participants will be randomized into a CRMRF activated group or a CRMRF deactivated group and receive physiotherapeutic techniques and pain education. The groups will undergo treatment for 10 consecutive weeks. At the beginning of the trial there will be an evaluation of pain intensity (using VAS), quality of life (using the SF-12), kinesiophobia (using the TSK-11), and catastrophism (using the PCS), as well as at the sixth and tenth sessions. The results of this study will show that CRMRF benefits the treatment of patients with CPPS, together with physiotherapeutic techniques and pain education. These results could offer an alternative conservative treatment option for these patients. ClinicalTrials.gov . Registered on 8 January 2019. The online version contains supplementary material available at 10.1186/s13063-021-05321-6

    Critical points in a relativistic bosonic gas induced by the quantum structure of spacetime

    Full text link
    It is well known that phase transitions arise if the interaction among particles embodies an attractive as well as a repulsive contribution. In this work it will be shown that the breakdown of Lorentz symmetry, characterized through a deformation in the relation dispersion, plus the bosonic statistics predict the emergence of critical points. In other words, in some quantum gravity models the structure of spacetime implies the emergence of critical points even when no interaction among the particle has been considered.Comment: 5 pages, no figure

    A quantum spin transducer based on nano electro-mechancial resonator arrays

    Full text link
    Implementation of quantum information processing faces the contradicting requirements of combining excellent isolation to avoid decoherence with the ability to control coherent interactions in a many-body quantum system. For example, spin degrees of freedom of electrons and nuclei provide a good quantum memory due to their weak magnetic interactions with the environment. However, for the same reason it is difficult to achieve controlled entanglement of spins over distances larger than tens of nanometers. Here we propose a universal realization of a quantum data bus for electronic spin qubits where spins are coupled to the motion of magnetized mechanical resonators via magnetic field gradients. Provided that the mechanical system is charged, the magnetic moments associated with spin qubits can be effectively amplified to enable a coherent spin-spin coupling over long distances via Coulomb forces. Our approach is applicable to a wide class of electronic spin qubits which can be localized near the magnetized tips and can be used for the implementation of hybrid quantum computing architectures

    Companions of Bright Barred Shapley Ames Galaxies

    Full text link
    Companion galaxy environment for a subset of 78 bright and nearby barred galaxies from the Shapley Ames Catalog is presented. Among spiral barred galaxies there are Seyfert galaxies, galaxies with circumnuclear structures, galaxies not associated with any large scale galaxy cloud structure, galaxies with peculiar disk morphology (crooked arms) and galaxies with normal disk morphology; the list includes all Hubble types. The companion galaxy list includes number of companion galaxies within 20 diameters (D25), their Hubble type and projected separation distance. Additionally, companion environment was searched for four known active spiral galaxies, three of them are Seyfert galaxies, namely, NGC 1068, NGC 1097, NGC 5548 and one is a starburst galaxy, M82. Among the results obtained it is noted that the only spiral barred galaxy classified as Sy 1 in our list has no companions within a projected distance of 20 diameters; 6 out of 10 Sy 2 bar galaxies have no companions within 10 diamters, 6 out of 10 Sy 2 galaxies have one or more companions at projected separation distances between 10 and 20 diameters; 6 out of 12 galaxies with circumnuclear structures have 2 or more companions within 20 diametersComment: Accepted for publication in the Astronomical Journal, 40 pages incl. 3 figure

    Resonance and frequency-locking phenomena in spatially extended phytoplankton-zooplankton system with additive noise and periodic forces

    Full text link
    In this paper, we present a spatial version of phytoplankton-zooplankton model that includes some important factors such as external periodic forces, noise, and diffusion processes. The spatially extended phytoplankton-zooplankton system is from the original study by Scheffer [M Scheffer, Fish and nutrients interplay determines algal biomass: a minimal model, Oikos \textbf{62} (1991) 271-282]. Our results show that the spatially extended system exhibit a resonant patterns and frequency-locking phenomena. The system also shows that the noise and the external periodic forces play a constructive role in the Scheffer's model: first, the noise can enhance the oscillation of phytoplankton species' density and format a large clusters in the space when the noise intensity is within certain interval. Second, the external periodic forces can induce 4:1 and 1:1 frequency-locking and spatially homogeneous oscillation phenomena to appear. Finally, the resonant patterns are observed in the system when the spatial noises and external periodic forces are both turned on. Moreover, we found that the 4:1 frequency-locking transform into 1:1 frequency-locking when the noise intensity increased. In addition to elucidating our results outside the domain of Turing instability, we provide further analysis of Turing linear stability with the help of the numerical calculation by using the Maple software. Significantly, oscillations are enhanced in the system when the noise term presents. These results indicate that the oceanic plankton bloom may partly due to interplay between the stochastic factors and external forces instead of deterministic factors. These results also may help us to understand the effects arising from undeniable subject to random fluctuations in oceanic plankton bloom.Comment: Some typos errors are proof, and some strong relate references are adde

    Coreless vortex ground state of the rotating spinor condensate

    Full text link
    We study the ground state of the rotating spinor condensate and show that for slow rotation the ground state of the ferromagnetic spinor condensate is a coreless vortex. While coreless vortex is not topologically stable, we show that there is an energetic threshold for the creation of a coreless vortex. This threshold corresponds to a critical rotation frequency that vanishes as the system size increases. Also, we demonstrate the dramatically different behavior of the spinor condensate with anti-ferromagnetic interactions. For anti-ferromagnetic spinor condensate the angular momentum as a function of rotation frequency exhibits the familiar staircase behavior, but in contrast to an ordinary condensate the first step is to the state with angular momentum 1/2 per particle.Comment: v2: Numerical parameters for trapping frequency in z-direction and for the particle number changed. Two new citations added ([13] and [22]). More discussion in chapter III A. added. A new Figure 4 added, former figure 4 changed to Figure
    corecore