4,091 research outputs found

    From quantum pulse gate to quantum pulse shaper -- enigneered frequency conversion in nonlinear optical waveguides

    Full text link
    Full control over the spatio-temporal structure of quantum states of light is an important goal in quantum optics, to generate for instance single-mode quantum pulses or to encode information on multiple modes, enhancing channel capacities. Quantum light pulses feature an inherent, rich spectral broadband-mode structure. In recent years, exploring the use of integrated optics as well as source-engineering has led to a deep understanding of the pulse-mode structure of guided quantum states of light. In addition, several groups have started to investigate the manipulation of quantum states by means of single-photon frequency conversion. In this paper we explore new routes towards complete control of the inherent pulse-modes of ultrafast pulsed quantum states by employing specifically designed nonlinear waveguides with adapted dispersion properties. Starting from our recently proposed quantum pulse gate (QPG) we further generalize the concept of spatio-spectral engineering for arbitrary \chitwo-based quantum processes. We analyse the sum-frequency generation based QPG and introduce the difference-frequency generation based quantum pulse shaper (QPS). Together, these versatile and robust integrated optics devices allow for arbitrary manipulations of the pulse-mode structure of ultrafast pulsed quantum states. The QPG can be utilized to select an arbitrary pulse mode from a multimode input state, whereas the QPS enables the generation of specific pulse modes from an input wavepacket with Gaussian-shaped spectrum.Comment: 21 pages, 9 figure

    The K→(ππ)I=2K\to(\pi\pi)_{I=2} Decay Amplitude from Lattice QCD

    Full text link
    We report on the first realistic \emph{ab initio} calculation of a hadronic weak decay, that of the amplitude A2A_2 for a kaon to decay into two \pi-mesons with isospin 2. We find ReA2=(1.436±0.063stat±0.258syst) 10−8 GeVA_2=(1.436\pm 0.063_{\textrm{stat}}\pm 0.258_{\textrm{syst}})\,10^{-8}\,\textrm{GeV} in good agreement with the experimental result and for the hitherto unknown imaginary part we find {Im} A2=−(6.83±0.51stat±1.30syst) 10−13 GeV\,A_2=-(6.83 \pm 0.51_{\textrm{stat}} \pm 1.30_{\textrm{syst}})\,10^{-13}\,{\rm GeV}. Moreover combining our result for Im\,A2A_2 with experimental values of Re\,A2A_2, Re\,A0A_0 and ϵ′/ϵ\epsilon^\prime/\epsilon, we obtain the following value for the unknown ratio Im\,A0A_0/Re\,A0A_0 within the Standard Model: Im A0/Re A0=−1.63(19)stat(20)syst×10−4\mathrm{Im}\,A_0/\mathrm{Re}\,A_0=-1.63(19)_{\mathrm{stat}}(20)_{\mathrm{syst}}\times10^{-4}. One consequence of these results is that the contribution from Im\,A2A_2 to the direct CP violation parameter ϵ′\epsilon^{\prime} (the so-called Electroweak Penguin, EWP, contribution) is Re(ϵ′/ϵ)EWP=−(6.52±0.49stat±1.24syst)×10−4(\epsilon^\prime/\epsilon)_{\mathrm{EWP}} = -(6.52 \pm 0.49_{\textrm{stat}} \pm 1.24_{\textrm{syst}}) \times 10^{-4}. We explain why this calculation of A2A_2 represents a major milestone for lattice QCD and discuss the exciting prospects for a full quantitative understanding of CP-violation in kaon decays.Comment: 5 pages, 1 figur

    Lattice determination of the K→(ππ)I=2K \to (\pi\pi)_{I=2} Decay Amplitude A2A_2

    Full text link
    We describe the computation of the amplitude A_2 for a kaon to decay into two pions with isospin I=2. The results presented in the letter Phys.Rev.Lett. 108 (2012) 141601 from an analysis of 63 gluon configurations are updated to 146 configurations giving ReA2=1.381(46)stat(258)syst10−8A_2=1.381(46)_{\textrm{stat}}(258)_{\textrm{syst}} 10^{-8} GeV and ImA2=−6.54(46)stat(120)syst10−13A_2=-6.54(46)_{\textrm{stat}}(120)_{\textrm{syst}}10^{-13} GeV. ReA2A_2 is in good agreement with the experimental result, whereas the value of ImA2A_2 was hitherto unknown. We are also working towards a direct computation of the K→(ππ)I=0K\to(\pi\pi)_{I=0} amplitude A0A_0 but, within the standard model, our result for ImA2A_2 can be combined with the experimental results for ReA0A_0, ReA2A_2 and ϵ′/ϵ\epsilon^\prime/\epsilon to give ImA0/A_0/ReA0=−1.61(28)×10−4A_0= -1.61(28)\times 10^{-4} . Our result for Im\,A2A_2 implies that the electroweak penguin (EWP) contribution to ϵ′/ϵ\epsilon^\prime/\epsilon is Re(ϵ′/ϵ)EWP=−(6.25±0.44stat±1.19syst)×10−4(\epsilon^\prime/\epsilon)_{\mathrm{EWP}} = -(6.25 \pm 0.44_{\textrm{stat}} \pm 1.19_{\textrm{syst}}) \times 10^{-4}.Comment: 59 pages, 11 figure

    Matched filters for coalescing binaries detection on massively parallel computers

    Get PDF
    We discuss some computational problems associated to matched filtering of experimental signals from gravitational wave interferometric detectors in a parallel-processing environment. We then specialize our discussion to the use of the APEmille and apeNEXT processors for this task. Finally, we accurately estimate the performance of an APEmille system on a computational load appropriate for the LIGO and VIRGO experiments, and extrapolate our results to apeNEXT.Comment: 19 pages, 6 figure

    On polynomial solutions of Heun equation

    Full text link
    By making use of a recently developed method to solve linear differential equations of arbitrary order, we find a wide class of polynomial solutions to the Heun equation. We construct the series solution to the Heun equation before identifying the polynomial solutions. The Heun equation extended by the addition of a term, - \s/x, is also amenable for polynomial solutions.Comment: 4 pages, No figur

    Changing the ideological roots of prejudice: Longitudinal effects of ethnic intergroup contact on social dominance orientation

    Get PDF
    Social Dominance Orientation (SDO) has been reported to be strongly related to a multitude of intergroup phenomena, but little is known about situational experiences that may influence SDO. Drawing from research on intergroup contact theory, we argue that positive intergroup contact is able to reduce SDO-levels. The results of an intergroup contact intervention study among high school students (Study 1, N=71) demonstrated that SDO-levels were indeed attenuated after the intervention. Furthermore, this intervention effect on SDO was especially pronounced among students reporting a higher quality of contact. A cross-lagged longitudinal survey among adults (Study 2, N=363) extended these findings by demonstrating that positive intergroup contact is able to decrease SDO over time. Moreover, we did not obtain evidence for the idea that people high in SDO would engage less in intergroup contact. These findings indicate that intergroup contact erodes one of the important socio-ideological bases of generalized prejudice and discrimination
    • …
    corecore