378 research outputs found

    Ligand binding site superposition and comparison based on Atomic Property Fields: identification of distant homologues, convergent evolution and PDB-wide clustering of binding sites

    Get PDF
    A new binding site comparison algorithm using optimal superposition of the continuous pharmacophoric property distributions is reported. The method demonstrates high sensitivity in discovering both, distantly homologous and convergent binding sites. Good quality of superposition is also observed on multiple examples. Using the new approach, a measure of site similarity is derived and applied to clustering of ligand binding pockets in PDB

    Introduction to protein folding for physicists

    Get PDF
    The prediction of the three-dimensional native structure of proteins from the knowledge of their amino acid sequence, known as the protein folding problem, is one of the most important yet unsolved issues of modern science. Since the conformational behaviour of flexible molecules is nothing more than a complex physical problem, increasingly more physicists are moving into the study of protein systems, bringing with them powerful mathematical and computational tools, as well as the sharp intuition and deep images inherent to the physics discipline. This work attempts to facilitate the first steps of such a transition. In order to achieve this goal, we provide an exhaustive account of the reasons underlying the protein folding problem enormous relevance and summarize the present-day status of the methods aimed to solving it. We also provide an introduction to the particular structure of these biological heteropolymers, and we physically define the problem stating the assumptions behind this (commonly implicit) definition. Finally, we review the 'special flavor' of statistical mechanics that is typically used to study the astronomically large phase spaces of macromolecules. Throughout the whole work, much material that is found scattered in the literature has been put together here to improve comprehension and to serve as a handy reference.Comment: 53 pages, 18 figures, the figures are at a low resolution due to arXiv restrictions, for high-res figures, go to http://www.pabloechenique.co

    Average Structures of a Single Knotted Ring Polymer

    Full text link
    Two types of average structures of a single knotted ring polymer are studied by Brownian dynamics simulations. For a ring polymer with N segments, its structure is represented by a 3N -dimensional conformation vector consisting of the Cartesian coordinates of the segment positions relative to the center of mass of the ring polymer. The average structure is given by the average conformation vector, which is self-consistently defined as the average of the conformation vectors obtained from a simulation each of which is rotated to minimize its distance from the average conformation vector. From each conformation vector sampled in a simulation, 2N conformation vectors are generated by changing the numbering of the segments. Among the 2N conformation vectors, the one closest to the average conformation vector is used for one type of the average structure. The other type of the averages structure uses all the conformation vectors generated from those sampled in a simulation. In thecase of the former average structure, the knotted part of the average structure is delocalized for small N and becomes localized as N is increased. In the case of the latter average structure, the average structure changes from a double loop structure for small N to a single loop structure for large N, which indicates the localization-delocalization transition of the knotted part.Comment: 15 pages, 19 figures, uses jpsj2.cl

    SGC - Structural Biology and Human Health: A New Approach to Publishing Structural Biology Results

    Get PDF
    The Structural Genomics Consortium (SGC) is a not-for-profit, public-private partnership established to deliver novel structural biology knowledge on proteins of medical relevance and place this information into the public domain without restriction, spearheading the concept of "Open-Source Science" to enable drug discovery. The SGC is a major provider of structural information focussed on proteins related to human health, contributing 20.5% of novel structures released by the PDB in 2008. In this article we describe the PLoS ONE Collection entitled 'Structural Biology and Human Health: Medically Relevant Proteins from the SGC'. This Collection contains a series of articles documenting many of the novel protein structures determined by the SGC and work to further characterise their function. Each article in this Collection can be read in an enhanced version where we have integrated our interactive and intuitive 3D visualisation platform, known as iSee. This publishing platform enables the communication of complex structural biology and related data to a wide audience of non-structural biologists. With the use of iSee as the first example of an interactive and intuitive 3D document publication method as part of PLoS ONE, we are pushing the boundaries of structural biology data delivery and peer-review. Our strong desire is that this step forward will encourage others to consider the need for publication of three dimensional and associated data in a similar manner. © 2009 Lee et al

    A short update on the structure of drug binding sites on neurotransmitter transporters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dopamine (DAT), noradrenalin (NET) and serotonin (SERT) transporters are molecular targets for different classes of psychotropic drugs. Cocaine and the SSRI (<it>S</it>)-citalopram block neurotransmitter reuptake competitively, but while cocaine is a non-selective reuptake inhibitor, (<it>S</it>)-citalopram is a selective SERT inhibitor.</p> <p>Findings</p> <p>Here we present comparisons of the binding sites and the electrostatic potential surfaces (EPS) of DAT, NET and SERT homology models based on two different LeuT<sub>Aa </sub>templates; with a substrate (leucine) in an occluded conformation (PDB id <ext-link ext-link-id="2a65" ext-link-type="pdb">2a65</ext-link>), and with an inhibitor (tryptophan) in an open-to-out conformation (PDB id <ext-link ext-link-id="3f3a" ext-link-type="pdb">3f3a</ext-link>). In the occluded homology models, two conserved aromatic amino acids (tyrosine and phenylalanine) formed a gate between the putative binding pockets, and this contact was interrupted in the open to out conformation. The EPS of DAT and NET were generally negative in the vestibular area, whereas the EPS of the vestibular area of SERT was more neutral.</p> <p>Conclusions</p> <p>The findings presented here contribute as an update on the structure of the binding sites of DAT, NET and SERT. The updated models, which have larger ligand binding site areas than models based on other templates, may serve as improved tools for virtual ligand screening.</p

    Substrate binding and translocation of the serotonin transporter studied by docking and molecular dynamics simulations

    Get PDF
    The serotonin (5-HT) transporter (SERT) plays an important role in the termination of 5-HT-mediated neurotransmission by transporting 5-HT away from the synaptic cleft and into the presynaptic neuron. In addition, SERT is the main target for antidepressant drugs, including the selective serotonin reuptake inhibitors (SSRIs). The three-dimensional (3D) structure of SERT has not yet been determined, and little is known about the molecular mechanisms of substrate binding and transport, though such information is very important for the development of new antidepressant drugs. In this study, a homology model of SERT was constructed based on the 3D structure of a prokaryotic homologous leucine transporter (LeuT) (PDB id: 2A65). Eleven tryptamine derivates (including 5-HT) and the SSRI (S)-citalopram were docked into the putative substrate binding site, and two possible binding modes of the ligands were found. To study the conformational effect that ligand binding may have on SERT, two SERT–5-HT and two SERT–(S)-citalopram complexes, as well as the SERT apo structure, were embedded in POPC lipid bilayers and comparative molecular dynamics (MD) simulations were performed. Our results show that 5-HT in the SERT–5-HTB complex induced larger conformational changes in the cytoplasmic parts of the transmembrane helices of SERT than any of the other ligands. Based on these results, we suggest that the formation and breakage of ionic interactions with amino acids in transmembrane helices 6 and 8 and intracellular loop 1 may be of importance for substrate translocation

    Spatial chemical distance based on atomic property fields

    Get PDF
    Similarity of compound chemical structures often leads to close pharmacological profiles, including binding to the same protein targets. The opposite, however, is not always true, as distinct chemical scaffolds can exhibit similar pharmacology as well. Therefore, relying on chemical similarity to known binders in search for novel chemicals targeting the same protein artificially narrows down the results and makes lead hopping impossible. In this study we attempt to design a compound similarity/distance measure that better captures structural aspects of their pharmacology and molecular interactions. The measure is based on our recently published method for compound spatial alignment with atomic property fields as a generalized 3D pharmacophoric potential. We optimized contributions of different atomic properties for better discrimination of compound pairs with the same pharmacology from those with different pharmacology using Partial Least Squares regression. Our proposed similarity measure was then tested for its ability to discriminate pharmacologically similar pairs from decoys on a large diverse dataset of 115 protein–ligand complexes. Compared to 2D Tanimoto and Shape Tanimoto approaches, our new approach led to improvement in the area under the receiver operating characteristic curve values in 66 and 58% of domains respectively. The improvement was particularly high for the previously problematic cases (weak performance of the 2D Tanimoto and Shape Tanimoto measures) with original AUC values below 0.8. In fact for these cases we obtained improvement in 86% of domains compare to 2D Tanimoto measure and 85% compare to Shape Tanimoto measure. The proposed spatial chemical distance measure can be used in virtual ligand screening
    corecore