5,689 research outputs found

    Intracardiac entrapment of a pulmonary artery catheter

    Get PDF

    Elastic Lennard-Jones Polymers Meet Clusters -- Differences and Similarities

    Full text link
    We investigate solid-solid and solid-liquid transitions of elastic flexible off-lattice polymers with Lennard-Jones monomer-monomer interaction and anharmonic springs by means of sophisticated variants of multicanonical Monte Carlo methods. We find that the low-temperature behavior depends strongly and non-monotonically on the system size and exhibits broad similarities to unbound atomic clusters. Particular emphasis is dedicated to the classification of icosahedral and non-icosahedral low-energy polymer morphologies.Comment: 9 pages, 17 figure

    Experimental demonstration of continuous variable purification of squeezed states

    Full text link
    We report on the first experimental demonstration of purification of nonclassical continuous variable states. The protocol uses two copies of phase-diffused states overlapped on a beam splitter and provides Gaussified, less mixed states with the degree of squeezing improved. The protocol uses only linear optical devices such as beam splitters and homodyne detection, thereby proving these optical elements can be used for successful purification of this type of state decoherence which occurs in optical transmission channels

    Input-output relations for a 3-port grating coupled Fabry-Perot cavity

    Get PDF
    We analyze an optical 3-port reflection grating by means of a scattering matrix formalism. Amplitude and phase relations between the 3 ports, i.e. the 3 orders of diffraction are derived. Such a grating can be used as an all-reflective, low-loss coupler to Fabry-Perot cavities. We derive the input output relations of a 3-port grating coupled cavity and find distinct properties not present in 2-port coupled cavities. The cavity relations further reveal that the 3-port coupler can be designed such that the additional cavity port interferes destructively. In this case the all-reflective, low-loss, single-ended Fabry-Perot cavity becomes equivalent to a standard transmissive, 2-port coupled cavity

    THE EVOLUTION OF THE TRANSCRIPTION APPARATUS

    Get PDF

    Three-port beam splitters-combiners for interferometer applications

    Full text link
    We derive generic phase and amplitude coupling relations for beam splitters-combiners that couple a single port with three output ports or input ports, respectively. We apply the coupling relations to a reflection grating that serves as a coupler to a single-ended Fabry-Perot ring cavity. In the impedance-matched case such an interferometer can act as an all-reflective ring mode cleaner. It is further shown that in the highly undercoupled case almost complete separation of carrier power and phase signal from a cavity strain can be achieved

    Automatic normal orientation in point clouds of building interiors

    Full text link
    Orienting surface normals correctly and consistently is a fundamental problem in geometry processing. Applications such as visualization, feature detection, and geometry reconstruction often rely on the availability of correctly oriented normals. Many existing approaches for automatic orientation of normals on meshes or point clouds make severe assumptions on the input data or the topology of the underlying object which are not applicable to real-world measurements of urban scenes. In contrast, our approach is specifically tailored to the challenging case of unstructured indoor point cloud scans of multi-story, multi-room buildings. We evaluate the correctness and speed of our approach on multiple real-world point cloud datasets

    First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory

    Full text link
    We report on the first long-term application of squeezed vacuum states of light to improve the shot-noise-limited sensitivity of a gravitational-wave observatory. In particular, squeezed vacuum was applied to the German/British detector GEO600 during a period of three months from June to August 2011, when GEO600 was performing an observational run together with the French/Italian Virgo detector. In a second period squeezing application continued for about 11 months from November 2011 to October 2012. During this time, squeezed vacuum was applied for 90.2% (205.2 days total) of the time that science-quality data was acquired with GEO600. Sensitivity increase from squeezed vacuum application was observed broad-band above 400Hz. The time average of gain in sensitivity was 26% (2.0dB), determined in the frequency band from 3.7kHz to 4.0kHz. This corresponds to a factor of two increase in observed volume of the universe, for sources in the kHz region (e.g. supernovae, magnetars). We introduce three new techniques to enable stable long-term application of squeezed light, and show that the glitch-rate of the detector did not increase from squeezing application. Squeezed vacuum states of light have arrived as a permanent application, capable of increasing the astrophysical reach of gravitational-wave detectors.Comment: 4 pages, 4 figure
    corecore