5,689 research outputs found
Elastic Lennard-Jones Polymers Meet Clusters -- Differences and Similarities
We investigate solid-solid and solid-liquid transitions of elastic flexible
off-lattice polymers with Lennard-Jones monomer-monomer interaction and
anharmonic springs by means of sophisticated variants of multicanonical Monte
Carlo methods. We find that the low-temperature behavior depends strongly and
non-monotonically on the system size and exhibits broad similarities to unbound
atomic clusters. Particular emphasis is dedicated to the classification of
icosahedral and non-icosahedral low-energy polymer morphologies.Comment: 9 pages, 17 figure
Experimental demonstration of continuous variable purification of squeezed states
We report on the first experimental demonstration of purification of
nonclassical continuous variable states. The protocol uses two copies of
phase-diffused states overlapped on a beam splitter and provides Gaussified,
less mixed states with the degree of squeezing improved. The protocol uses only
linear optical devices such as beam splitters and homodyne detection, thereby
proving these optical elements can be used for successful purification of this
type of state decoherence which occurs in optical transmission channels
Input-output relations for a 3-port grating coupled Fabry-Perot cavity
We analyze an optical 3-port reflection grating by means of a scattering
matrix formalism. Amplitude and phase relations between the 3 ports, i.e. the 3
orders of diffraction are derived. Such a grating can be used as an
all-reflective, low-loss coupler to Fabry-Perot cavities. We derive the input
output relations of a 3-port grating coupled cavity and find distinct
properties not present in 2-port coupled cavities. The cavity relations further
reveal that the 3-port coupler can be designed such that the additional cavity
port interferes destructively. In this case the all-reflective, low-loss,
single-ended Fabry-Perot cavity becomes equivalent to a standard transmissive,
2-port coupled cavity
Three-port beam splitters-combiners for interferometer applications
We derive generic phase and amplitude coupling relations for beam
splitters-combiners that couple a single port with three output ports or input
ports, respectively. We apply the coupling relations to a reflection grating
that serves as a coupler to a single-ended Fabry-Perot ring cavity. In the
impedance-matched case such an interferometer can act as an all-reflective ring
mode cleaner. It is further shown that in the highly undercoupled case almost
complete separation of carrier power and phase signal from a cavity strain can
be achieved
PHYLOGENY OF THE ARCHAEBACTERIA AND EUKARYOTES: HOMOLOGY OF THE DNA-DEPENDENT RNA POLYMERASES
Automatic normal orientation in point clouds of building interiors
Orienting surface normals correctly and consistently is a fundamental problem
in geometry processing. Applications such as visualization, feature detection,
and geometry reconstruction often rely on the availability of correctly
oriented normals. Many existing approaches for automatic orientation of normals
on meshes or point clouds make severe assumptions on the input data or the
topology of the underlying object which are not applicable to real-world
measurements of urban scenes. In contrast, our approach is specifically
tailored to the challenging case of unstructured indoor point cloud scans of
multi-story, multi-room buildings. We evaluate the correctness and speed of our
approach on multiple real-world point cloud datasets
First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory
We report on the first long-term application of squeezed vacuum states of
light to improve the shot-noise-limited sensitivity of a gravitational-wave
observatory. In particular, squeezed vacuum was applied to the German/British
detector GEO600 during a period of three months from June to August 2011, when
GEO600 was performing an observational run together with the French/Italian
Virgo detector. In a second period squeezing application continued for about 11
months from November 2011 to October 2012. During this time, squeezed vacuum
was applied for 90.2% (205.2 days total) of the time that science-quality data
was acquired with GEO600. Sensitivity increase from squeezed vacuum application
was observed broad-band above 400Hz. The time average of gain in sensitivity
was 26% (2.0dB), determined in the frequency band from 3.7kHz to 4.0kHz. This
corresponds to a factor of two increase in observed volume of the universe, for
sources in the kHz region (e.g. supernovae, magnetars). We introduce three new
techniques to enable stable long-term application of squeezed light, and show
that the glitch-rate of the detector did not increase from squeezing
application. Squeezed vacuum states of light have arrived as a permanent
application, capable of increasing the astrophysical reach of
gravitational-wave detectors.Comment: 4 pages, 4 figure
- …
