3,148 research outputs found

    Interaction-induced decoherence of atomic Bloch oscillations

    Full text link
    We show that the energy spectrum of the Bose-Hubbard model amended by a static field exhibits Wigner-Dyson level statistics. In itself a characteristic signature of quantum chaos, this induces the irreversible decay of Bloch oscillations of cold, interacting atoms loaded into an optical lattice, and provides a Hamiltonian model for interaction induced decoherence.Comment: revtex4, figure 3 is substituted, small changes in the tex

    Classical versus Quantum Time Evolution of Densities at Limited Phase-Space Resolution

    Full text link
    We study the interrelations between the classical (Frobenius-Perron) and the quantum (Husimi) propagator for phase-space (quasi-)probability densities in a Hamiltonian system displaying a mix of regular and chaotic behavior. We focus on common resonances of these operators which we determine by blurring phase-space resolution. We demonstrate that classical and quantum time evolution look alike if observed with a resolution much coarser than a Planck cell and explain how this similarity arises for the propagators as well as their spectra. The indistinguishability of blurred quantum and classical evolution implies that classical resonances can conveniently be determined from quantum mechanics and in turn become effective for decay rates of quantum correlations.Comment: 10 pages, 3 figure

    Matrix Element Distribution as a Signature of Entanglement Generation

    Full text link
    We explore connections between an operator's matrix element distribution and its entanglement generation. Operators with matrix element distributions similar to those of random matrices generate states of high multi-partite entanglement. This occurs even when other statistical properties of the operators do not conincide with random matrices. Similarly, operators with some statistical properties of random matrices may not exhibit random matrix element distributions and will not produce states with high levels of multi-partite entanglement. Finally, we show that operators with similar matrix element distributions generate similar amounts of entanglement.Comment: 7 pages, 6 figures, to be published PRA, partially supersedes quant-ph/0405053, expands quant-ph/050211

    Overdamping by weakly coupled environments

    Get PDF
    A quantum system weakly interacting with a fast environment usually undergoes a relaxation with complex frequencies whose imaginary parts are damping rates quadratic in the coupling to the environment, in accord with Fermi's ``Golden Rule''. We show for various models (spin damped by harmonic-oscillator or random-matrix baths, quantum diffusion, quantum Brownian motion) that upon increasing the coupling up to a critical value still small enough to allow for weak-coupling Markovian master equations, a new relaxation regime can occur. In that regime, complex frequencies lose their real parts such that the process becomes overdamped. Our results call into question the standard belief that overdamping is exclusively a strong coupling feature.Comment: 4 figures; Paper submitted to Phys. Rev.

    Non-Markovian generalization of the Lindblad theory of open quantum systems

    Full text link
    A systematic approach to the non-Markovian quantum dynamics of open systems is given by the projection operator techniques of nonequilibrium statistical mechanics. Combining these methods with concepts from quantum information theory and from the theory of positive maps, we derive a class of correlated projection superoperators that take into account in an efficient way statistical correlations between the open system and its environment. The result is used to develop a generalization of the Lindblad theory to the regime of highly non-Markovian quantum processes in structured environments.Comment: 10 pages, 1 figure, replaced by published versio

    Correlated projection operator approach to non-Markovian dynamics in spin baths

    Full text link
    The dynamics of an open quantum system is usually studied by performing a weak-coupling and weak-correlation expansion in the system-bath interaction. For systems exhibiting strong couplings and highly non-Markovian behavior this approach is not justified. We apply a recently proposed correlated projection superoperator technique to the model of a central spin coupled to a spin bath via full Heisenberg interaction. Analytical solutions to both the Nakajima-Zwanzig and the time-convolutionless master equation are determined and compared with the results of the exact solution. The correlated projection operator technique significantly improves the standard methods and can be applied to many physical problems such as the hyperfine interaction in a quantum dot

    Characterization of complex quantum dynamics with a scalable NMR information processor

    Get PDF
    We present experimental results on the measurement of fidelity decay under contrasting system dynamics using a nuclear magnetic resonance quantum information processor. The measurements were performed by implementing a scalable circuit in the model of deterministic quantum computation with only one quantum bit. The results show measurable differences between regular and complex behaviour and for complex dynamics are faithful to the expected theoretical decay rate. Moreover, we illustrate how the experimental method can be seen as an efficient way for either extracting coarse-grained information about the dynamics of a large system, or measuring the decoherence rate from engineered environments.Comment: 4pages, 3 figures, revtex4, updated with version closer to that publishe

    Understanding the effect of seams on the aerodynamics of an association football

    Get PDF
    The aerodynamic properties of an association football were measured using a wind tunnel arrangement. A third scale model of a generic football (with seams) was used in addition to a 'mini-football'. As the wind speed was increased, the drag coefficient decreased from 0.5 to 0.2, suggesting a transition from laminar to turbulent behaviour in the boundary layer. For spinning footballs, the Magnus effect was observed and it was found that reverse Magnus effects were possible at low Reynolds numbers. Measurements on spinning smooth spheres found that laminar behaviour led to a high drag coefficient for a large range of Reynolds numbers, and Magnus effects were inconsistent, but generally showed reverse Magnus behaviour at high Reynolds number and spin parameter. Trajectory simulations of free kicks demonstrated that a football that is struck in the centre will follow a near straight trajectory, dipping slightly before reaching the goal, whereas a football that is struck off centre will bend before reaching the goal, but will have a significantly longer flight time. The curving kick simulation was repeated for a smooth ball, which resulted in a longer flight time, due to increased drag, and the ball curving in the opposite direction, due to reverse Magnus effects. The presence of seams was found to encourage turbulent behaviour, resulting in reduced drag and more predictable Magnus behaviour for a conventional football, compared with a smooth ball. © IMechE 2005

    Fidelity recovery in chaotic systems and the Debye-Waller factor

    Full text link
    Using supersymmetry calculations and random matrix simulations, we studied the decay of the average of the fidelity amplitude f_epsilon(tau)=<psi(0)| exp(2 pi i H_epsilon tau) exp(-2 pi i H_0 tau) |psi(0)>, where H_epsilon differs from H_0 by a slight perturbation characterized by the parameter epsilon. For strong perturbations a recovery of f_epsilon(tau) at the Heisenberg time tau=1 is found. It is most pronounced for the Gaussian symplectic ensemble, and least for the Gaussian orthogonal one. Using Dyson's Brownian motion model for an eigenvalue crystal, the recovery is interpreted in terms of a spectral analogue of the Debye-Waller factor known from solid state physics, describing the decrease of X-ray and neutron diffraction peaks with temperature due to lattice vibrations.Comment: revised version (major changes), 4 pages, 4 figure

    Non-Markovian non-stationary completely positive open quantum system dynamics

    Full text link
    By modeling the interaction of a system with an environment through a renewal approach, we demonstrate that completely positive non-Markovian dynamics may develop some unexplored non-standard statistical properties. The renewal approach is defined by a set of disruptive events, consisting in the action of a completely positive superoperator over the system density matrix. The random time intervals between events are described by an arbitrary waiting-time distribution. We show that, in contrast to the Markovian case, if one performs a system-preparation (measurement) at an arbitrary time, the subsequent evolution of the density matrix evolution is modified. The non-stationary character refers to the absence of an asymptotic master equation even when the preparation is performed at arbitrary long times. In spite of this property, we demonstrate that operator expectation values and operators correlations have the same dynamical structure, establishing the validity of a non-stationary quantum regression hypothesis. The non-stationary property of the dynamic is also analyzed through the response of the system to an external weak perturbation.Comment: 13 pages, 3 figure
    corecore