3,148 research outputs found
Interaction-induced decoherence of atomic Bloch oscillations
We show that the energy spectrum of the Bose-Hubbard model amended by a
static field exhibits Wigner-Dyson level statistics. In itself a characteristic
signature of quantum chaos, this induces the irreversible decay of Bloch
oscillations of cold, interacting atoms loaded into an optical lattice, and
provides a Hamiltonian model for interaction induced decoherence.Comment: revtex4, figure 3 is substituted, small changes in the tex
Classical versus Quantum Time Evolution of Densities at Limited Phase-Space Resolution
We study the interrelations between the classical (Frobenius-Perron) and the
quantum (Husimi) propagator for phase-space (quasi-)probability densities in a
Hamiltonian system displaying a mix of regular and chaotic behavior. We focus
on common resonances of these operators which we determine by blurring
phase-space resolution. We demonstrate that classical and quantum time
evolution look alike if observed with a resolution much coarser than a Planck
cell and explain how this similarity arises for the propagators as well as
their spectra. The indistinguishability of blurred quantum and classical
evolution implies that classical resonances can conveniently be determined from
quantum mechanics and in turn become effective for decay rates of quantum
correlations.Comment: 10 pages, 3 figure
Matrix Element Distribution as a Signature of Entanglement Generation
We explore connections between an operator's matrix element distribution and
its entanglement generation. Operators with matrix element distributions
similar to those of random matrices generate states of high multi-partite
entanglement. This occurs even when other statistical properties of the
operators do not conincide with random matrices. Similarly, operators with some
statistical properties of random matrices may not exhibit random matrix element
distributions and will not produce states with high levels of multi-partite
entanglement. Finally, we show that operators with similar matrix element
distributions generate similar amounts of entanglement.Comment: 7 pages, 6 figures, to be published PRA, partially supersedes
quant-ph/0405053, expands quant-ph/050211
Overdamping by weakly coupled environments
A quantum system weakly interacting with a fast environment usually undergoes
a relaxation with complex frequencies whose imaginary parts are damping rates
quadratic in the coupling to the environment, in accord with Fermi's ``Golden
Rule''. We show for various models (spin damped by harmonic-oscillator or
random-matrix baths, quantum diffusion, quantum Brownian motion) that upon
increasing the coupling up to a critical value still small enough to allow for
weak-coupling Markovian master equations, a new relaxation regime can occur. In
that regime, complex frequencies lose their real parts such that the process
becomes overdamped. Our results call into question the standard belief that
overdamping is exclusively a strong coupling feature.Comment: 4 figures; Paper submitted to Phys. Rev.
Non-Markovian generalization of the Lindblad theory of open quantum systems
A systematic approach to the non-Markovian quantum dynamics of open systems
is given by the projection operator techniques of nonequilibrium statistical
mechanics. Combining these methods with concepts from quantum information
theory and from the theory of positive maps, we derive a class of correlated
projection superoperators that take into account in an efficient way
statistical correlations between the open system and its environment. The
result is used to develop a generalization of the Lindblad theory to the regime
of highly non-Markovian quantum processes in structured environments.Comment: 10 pages, 1 figure, replaced by published versio
Correlated projection operator approach to non-Markovian dynamics in spin baths
The dynamics of an open quantum system is usually studied by performing a
weak-coupling and weak-correlation expansion in the system-bath interaction.
For systems exhibiting strong couplings and highly non-Markovian behavior this
approach is not justified. We apply a recently proposed correlated projection
superoperator technique to the model of a central spin coupled to a spin bath
via full Heisenberg interaction. Analytical solutions to both the
Nakajima-Zwanzig and the time-convolutionless master equation are determined
and compared with the results of the exact solution. The correlated projection
operator technique significantly improves the standard methods and can be
applied to many physical problems such as the hyperfine interaction in a
quantum dot
Characterization of complex quantum dynamics with a scalable NMR information processor
We present experimental results on the measurement of fidelity decay under
contrasting system dynamics using a nuclear magnetic resonance quantum
information processor. The measurements were performed by implementing a
scalable circuit in the model of deterministic quantum computation with only
one quantum bit. The results show measurable differences between regular and
complex behaviour and for complex dynamics are faithful to the expected
theoretical decay rate. Moreover, we illustrate how the experimental method can
be seen as an efficient way for either extracting coarse-grained information
about the dynamics of a large system, or measuring the decoherence rate from
engineered environments.Comment: 4pages, 3 figures, revtex4, updated with version closer to that
publishe
Understanding the effect of seams on the aerodynamics of an association football
The aerodynamic properties of an association football were measured using a wind tunnel arrangement. A third scale model of a generic football (with seams) was used in addition to a 'mini-football'. As the wind speed was increased, the drag coefficient decreased from 0.5 to 0.2, suggesting a transition from laminar to turbulent behaviour in the boundary layer. For spinning footballs, the Magnus effect was observed and it was found that reverse Magnus effects were possible at low Reynolds numbers. Measurements on spinning smooth spheres found that laminar behaviour led to a high drag coefficient for a large range of Reynolds numbers, and Magnus effects were inconsistent, but generally showed reverse Magnus behaviour at high Reynolds number and spin parameter. Trajectory simulations of free kicks demonstrated that a football that is struck in the centre will follow a near straight trajectory, dipping slightly before reaching the goal, whereas a football that is struck off centre will bend before reaching the goal, but will have a significantly longer flight time. The curving kick simulation was repeated for a smooth ball, which resulted in a longer flight time, due to increased drag, and the ball curving in the opposite direction, due to reverse Magnus effects. The presence of seams was found to encourage turbulent behaviour, resulting in reduced drag and more predictable Magnus behaviour for a conventional football, compared with a smooth ball. © IMechE 2005
Fidelity recovery in chaotic systems and the Debye-Waller factor
Using supersymmetry calculations and random matrix simulations, we studied
the decay of the average of the fidelity amplitude f_epsilon(tau)=<psi(0)|
exp(2 pi i H_epsilon tau) exp(-2 pi i H_0 tau) |psi(0)>, where H_epsilon
differs from H_0 by a slight perturbation characterized by the parameter
epsilon. For strong perturbations a recovery of f_epsilon(tau) at the
Heisenberg time tau=1 is found. It is most pronounced for the Gaussian
symplectic ensemble, and least for the Gaussian orthogonal one. Using Dyson's
Brownian motion model for an eigenvalue crystal, the recovery is interpreted in
terms of a spectral analogue of the Debye-Waller factor known from solid state
physics, describing the decrease of X-ray and neutron diffraction peaks with
temperature due to lattice vibrations.Comment: revised version (major changes), 4 pages, 4 figure
Non-Markovian non-stationary completely positive open quantum system dynamics
By modeling the interaction of a system with an environment through a renewal
approach, we demonstrate that completely positive non-Markovian dynamics may
develop some unexplored non-standard statistical properties. The renewal
approach is defined by a set of disruptive events, consisting in the action of
a completely positive superoperator over the system density matrix. The random
time intervals between events are described by an arbitrary waiting-time
distribution. We show that, in contrast to the Markovian case, if one performs
a system-preparation (measurement) at an arbitrary time, the subsequent
evolution of the density matrix evolution is modified. The non-stationary
character refers to the absence of an asymptotic master equation even when the
preparation is performed at arbitrary long times. In spite of this property, we
demonstrate that operator expectation values and operators correlations have
the same dynamical structure, establishing the validity of a non-stationary
quantum regression hypothesis. The non-stationary property of the dynamic is
also analyzed through the response of the system to an external weak
perturbation.Comment: 13 pages, 3 figure
- …
