We study the interrelations between the classical (Frobenius-Perron) and the
quantum (Husimi) propagator for phase-space (quasi-)probability densities in a
Hamiltonian system displaying a mix of regular and chaotic behavior. We focus
on common resonances of these operators which we determine by blurring
phase-space resolution. We demonstrate that classical and quantum time
evolution look alike if observed with a resolution much coarser than a Planck
cell and explain how this similarity arises for the propagators as well as
their spectra. The indistinguishability of blurred quantum and classical
evolution implies that classical resonances can conveniently be determined from
quantum mechanics and in turn become effective for decay rates of quantum
correlations.Comment: 10 pages, 3 figure