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We present experimental results on the measurement of fidelity decay under contrasting system
dynamics using a nuclear magnetic resonance quantum information processor. The measurements were
performed by implementing a scalable circuit in the model of deterministic quantum computation with
only one quantum bit. The results show measurable differences between regular and complex behavior
and for complex dynamics are faithful to the expected theoretical decay rate. Moreover, we illustrate how
the experimental method can be seen as an efficient way for either extracting coarse-grained information
about the dynamics of a large system or measuring the decoherence rate from engineered environments.
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Quantum information processors (QIP) promise effi-
cient solutions to problems that seem intractable using
classical devices. Tremendous progress has been achieved
in understanding how much more powerful quantum me-
chanics is at manipulating information [1]. Some first steps
have been taken in experimentally demonstrating both
algorithms [2] and simulating physical systems [3], in
small prototype devices, and extensive research is pushing
forward many avenues in the search for a fully scalable
quantum computer [4]. On the way to larger and scalable
devices, benchmarking and characterizing will play a cru-
cial role in understanding the performance of devices and
pointing out directions where improvement is required. An
obvious characterizing procedure is full state or process
tomography [5]; however, these methods will become un-
feasible as we move to larger QIP. The number of experi-
ments necessary for tomography grows exponentially with
the size of the system and the experimental time required
will quickly become prohibitive. We must turn instead to
characterizations which provide coarse-grained informa-
tion. These experiments will extract the information nec-
essary for quantum control or error correction processes,
yet will be achievable using a reasonable amount of re-
sources—i.e., in a scalable manner.

One such measure of interest is the fidelity decay. This
tool is useful in two contexts: in characterizing the com-
plexity of a system’s dynamics and in studying the effects
of the environment dynamics on decoherence rates.
Simulating quantum dynamics, whether of the system
of interest or of a large environment, on a classical com-
puter is inherently difficult; so, a quantum computer is a
natural tool in the study of complex (chaotic) quantum
dynamics [6]. Previous experimental work on the simula-
tion of quantum chaos [7] on a QIP relied on full state
tomography, which is an inefficient, and hence unscalable,
means of measuring signatures of the system’s complexity.
Here, we experimentally investigate complex dynamics
through a fidelity decay measurement that requires only
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one pseudopure bit of quantum information, is fully scal-
able in the absence of noise, and whose running time is
limited only by the inherent complexity of the map we are
characterizing.

In classical mechanics, the distinction between regular
and chaotic behavior is clear: the rate at which two states,
initially close in phase space, are driven apart is either
exponential or subexponential. This measure has no rele-
vance for isolated quantum systems, since their unitary
evolution preserves the distance between two states. The
field of quantum chaos looks at other signatures of chaos
[8]. Fidelity decay under perturbation, initially proposed
by Peres [9], is an important analog to the classical notion
of instability and has received much study [10–13]. Rather
than considering the overlap of two nearby states evolving
under the same evolution, this method considers the over-
lap of the same initial state evolved under two nearby
unitary maps. If the discrete time evolution is given by
the map U, then we also consider the map Up � UP,
where P � exp��iV� for some Hermitian matrix V.
Then, the fidelity decay after n steps is given by,

Fn� � � jh j�U
n�yUn

pj ij
2: (1)

The analogy with classical mechanics suggests that
chaotic systems might show an exponential fidelity decay,
while regular systems would decay at a slower (e.g., poly-
nomial) rate. However, numerical studies of small systems
show a much more complicated situation, with different
behaviors depending on the form and strength of the per-
turbation [11–13]. Yet, for a range of sufficiently strong
perturbations, chaotic systems show a universal exponen-
tial fidelity decay at an average rate which is given by the
Fermi golden rule (FGR) [13,14]. The average decay is
universal, in the sense that it is independent of the system
dynamics and depends only on certain details of the per-
turbation. Specifically, the rate of the universal exponential
decay depends only on the variance of the eigenvalues of
2-1 © 2005 The American Physical Society
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the perturbation (i.e., the 2-norm of the perturbation, kVk2)
and continues until a saturation level O�1N�, due to the finite
system dimension N. Hence, direct measurement of the
fidelity decay under different applied perturbations can
provide important information about the complexity of
the system dynamics.

Given some dynamical system under study, the fidelity
decay measured for any one particular initial state will
fluctuate from the average—an effect particularly pro-
nounced with small systems. Hence estimating the average
decay can require averaging over many different initial
states. However, recently Poulin et al. [15] worked out a
quantum circuit (see Fig. 1) for directly measuring the
average fidelity decay within the deterministic quantum
computation with a single bit (DQC1) model [16]. The
fidelity decay after n steps, averaged over a uniform (Haar)
measure of the initial states j i [see Eq. (1)] for an arbi-
trary system of dimension N takes the general form

F�n� �
jTrf�Un�y�PU�ngj2 � N

N2 � N
: (2)

Therefore, experimental determination of the average
fidelity decay for a particular U and P requires measuring
the trace, for which there exists an efficient DQC1 circuit
[17].

Liquid state NMR offers a test bed technology with a
sufficient number of qubits and control for the first dem-
onstration of a DQC1 algorithm. The DQC1 model,
although more limited than full quantum computation, is
interesting, since it questions entanglement as the basic
concept behind the extra power of quantum computers
[18]. Although the model does not allow for error correc-
tion, the required initial state is not a full multiqubit
pseudopure state as in conventional NMR QIP [19], but a
single pseudopure qubit of the form �� �

1��
2 1� �j0ih0j,

with all other qubits starting in the maximally mixed state.
This state is very close to the thermal state of liquid state
NMR and can be efficiently prepared from the thermal
distribution.

The experiments were implemented on a Bruker Avance
700 MHz spectrometer using the molecule transcrotonic
acid (shown in Fig. 2). The four carbons were used as the
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FIG. 1. Ideal quantum circuit for measuring fidelity decay
after n steps. The top qubit in a pure state can be considered
either as a probe of the bottom system of K qubits which starts in
the maximally mixed state or as a toy system being decohered by
the maximally mixed environment below. Making the final
rotation about the x (y) basis gives the real (imaginary) part of
the trace in Eq. (2). Taken from Ref. [15].
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system qubits and the spin 1
2 selected part of the methyl

group was the probe. This setup allowed the use of broad-
band refocusing pulses to decouple the probe qubit from
the system qubits during the application of the random map
U. H1 and H2 were decoupled by placing them in a
pseudopure state at the beginning of the pulse sequence.
Measurement was performed by quadrature detection of
the free induction decay of the methyl group which gives
both h�xi and h�yi. Further details of the molecule and
experimental technique can be found in Ref. [20].

We investigated the difference in fidelity decay response
for regular evolution—provided by the natural
Hamiltonian of the molecule—versus complex evolu-
tion—achieved by using our ability to generate arbitrary
dynamics (universal control) to implement a pseudoran-
dom map [8]. We used a decomposition for pseudorandom
operators based on repeated applications of a two step
process: (i) Individual random rotations are applied to
each qubit and (ii) simultaneous two-body interactions
between neighbors given by the unitary, U � exp�i��4��Pn�1

j�1 �
j
z � �

j�1
z 	 [21]. For a finite number of repetitions

of these two steps, the resulting distribution of maps is
biased with respect to the uniform measure; however, it
converges exponentially to the uniform measure [22].
For this experiment the first step was replaced by corre-
lated random rotations, induced by broadband pulses of
random phase and power on either side of a randomly
chosen delay period providing random rotations about
the z axis and some two-body interactions. In order to
reach a suitable trade-off between decoherence effects
and the randomness of the map four iterations were im-
plemented. Although there is not as many random parame-
ters in our experimental scheme as in the theoretical
procedure, numerical simulations showed that, after four
repetitions it implemented a sufficiently random map to
FIG. 2. The molecule transcrotonic acid and its natural
Hamiltonian-diagonal terms are chemical shifts and off-diagonal
elements coupling terms in Hz. The darkly shaded nuclei are
hydrogen and the lightly shaded, carbon. The unlabeled nuclei
are oxygen whose natural abundance have zero spin. Hence, we
can ignore their coupling with the rest of the molecule. The three
hydrogen nuclei of the methyl group are magnetically equiva-
lent. They form a composite spin, from which we can select the
spin 1

2 subspace, giving us an additional qubit.
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FIG. 3. Comparison of fidelity decay curves for regular (a)
versus chaotic (b) evolution under different forms of perturba-
tion. The natural evolution of the molecule provided the regular
system and a pseudorandom map was used to model chaotic
evolution. The perturbation form was controlled by the presence
or absence of conjugate rotations on either side of the coupling
interaction between the probe and system. In the case of regular
evolution, when the perturbation is a rotation about the z axis (�
curves), which commutes with a system coordinate, the fidelity
decay shows substantial fluctuations away from the average.
Changing the perturbation to a rotation about the x axis (�
curves) substantially alters the form of the decay. In the chaotic
case, the evolution looks random in the eigenbasis of either
perturbation and the decays exhibit the universality of the fidelity
decay for complex dynamics. The FGR result (solid curves) and
standard deviations (dashed lines) calculated from numerical
simulations assuming perfect control are also shown. The inset
of (b) shows the experimental average fidelity decay from
20 different random maps. The dotted line shows the correspond-
ing average from the numerical simulations, and we can see that
deviation from the exponential decay is also present in the
numerical results and is well explained by the finite size satura-
tion level.
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simulate complex dynamics. The first group to implement
these pseudorandom operators measured their degree of
randomness through complete state tomography [21]. Note
that here, from the measurement of the fidelity decay we
can efficiently characterize the degree of randomness of
the map.

The controlled perturbation was implemented using the
natural Hamiltonian of the molecule that provides a cou-
pling between the probe and the system qubits of the form:P4
j�1 JMCi�

M
z � �Ciz . This can been seen as a controlled

rotation of the system qubits about the z axis. Therefore, a
controlled operation on the system qubits can be imple-
mented by allowing the natural evolution for a time pro-
portional to the desired strength of the perturbation. This
perturbation can be transformed into a rotation about an-
other axis, by sandwiching the evolution with two rotations
of the target qubits. The fidelity decay depends on the
eigenvector statistics of the system in the eigenbasis of
the perturbation [13]. For the large majority of randomly
chosen perturbations, a regular system will have random
statistics in that eigenbasis and show an exponential decay
at the FGR rate. However, for perturbations given by
simple functions of a system coordinate, only the inte-
grable system will have a structured form in the perturba-
tion eigenbasis and hence exhibit a fidelity decay with
large fluctuations from the FGR average.

Different random maps can be generated by varying the
pulses and delay times chosen. This allows an averaging
over random maps which is important because of the finite
size fluctuations in the fidelity decay. The average fidelity
decay depends only on the relative randomness between
the system and perturbation. But, the fidelity decay for any
particular map will fluctuate (an effect independent of the
initial state which is already averaged over by this circuit
implementation). These fluctuations disappear as the size
of the system increases beyond a few qubits, but for small
systems, this effect is pronounced and requires an averag-
ing over different random maps to obtain good statistics.
To quantify the fluctuations, numerical simulations of the
fidelity decay experiment were performed over 1000 dif-
ferent random maps created assuming perfect control.
Averages and deviations were then calculated to compare
with the experimental results.

The results of Fig. 3 also show how the form of the
perturbation effects the decay. The pseudorandom map
shows a universal response, in that the decays are identical
under different perturbations. On the other hand, the natu-
ral evolution’s decay varies wildly. This result demon-
strates the necessity of choosing the perturbation
carefully in the context of distinguishing between regular
and chaotic evolution: fidelity decay will provide useful
information only if the applied perturbation commutes
with the system’s coordinate [13].

These experiments also highlight the relevance of these
techniques to decoherence studies. For this purpose, we
25050
consider the pseudopure qubit to be the system we are
interested in and the maximally mixed bottom register,
the environment. The decoherence rate of the system is
typically governed by some macroscopic parameters of the
environment, such as its temperature, cutoff frequency,
etc.; see, e.g., Refs. [23,24]. Recently, the importance of
2-3
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the dynamics of the environment has been expressed by a
few authors [15,25], and our experiments constitute a
direct demonstration of these effects because we can di-
rectly control the complexity of the environment’s
dynamics.

Consider a Hamiltonian describing the evolution of the
probe and environment together as H � HE � AS � BE,
where HE is the self-Hamiltonian of the environment and
AS � BE is the coupling between the environment and the
probe. We assume an initial product state �S�0� � �E�0�.
We obtain the state of the probe �S�t� by tracing out the
environment after a time t. When expressed in the eigen-
basis of the coupling (Ajji � �jjji), the diagonal elements
of �S�t� are equal to those of �S�0�, while its off-diagonal
terms have decayed by a factor �jk�t� given by (using the
Trotter decomposition and �! 0)

1

N
Trf�ei��HE��jB��t=��e�i���j��k�Be�i��HE��jB��t=�g;

which is identical to the trace element of Eq. (2) and so was
directly measured in our experiments. Hence, the decoher-
ence rate in this model depends on how random the envi-
ronment’s dynamics appear in the eigenbasis of the
coupling. Moreover, the coupling strength is modulated
by the eigenvalue difference �j � �k, so in the FGR re-
gime, the decoherence rate of the �j; k� entry of �S is
proportional to ��j � �k�2.

In conclusion, using our universal control over the qubit
register we were able to simulate regular and complex
dynamics for a quantum system and contrast their fidelity
decay. Our scheme avoids the scalability limitations of
conventional NMR QIP by relying on neither full pseudo-
pure state initialization nor full tomography. The method is
therefore scalable in the absence of noise and provides a
powerful tool for characterizing the dynamics of an un-
known system. Moreover, our experiment can also be seen
as a direct measurement of the decoherence rate of a
system coupled to an engineered environment wherein
universal control over the environment allows for sys-
tematic study of the impact of the environment dynamics
and the coupling to the environment on the decoherence
rate. As such, it is an experimental demonstration of the
importance of the environment dynamics in the decoher-
ence rate.
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