2,647 research outputs found

    Leptoquarks decaying to a top quark and a charged lepton at hadron colliders

    Full text link
    We study the sensitivity of the Tevatron and the 7 TeV LHC to a leptoquark S coupling to a top quark and a charged lepton L (= e, mu, or tau). For the Tevatron, we focus on the case m_S < m_t, where the leptoquark pair production cross section is large, and the decay is three-body: S --> W b L^{\pm}. We argue that existing Tevatron observations could exclude m_S \lsim 160 GeV. For m_S > m_t, we show that the LHC experiments with low integrated luminosity could be sensitive to such leptoquarks decaying to tl^{\pm} with l= mu or tau.Comment: 13 pages, 6 figures, minor changes (typos

    Low energy n-\nuc{3}{H} scattering : a novel testground for nuclear interaction

    Full text link
    The low energy n-\nuc{3}{H} elastic cross sections near the resonance peak are calculated by solving the 4-nucleon problem with realistic NN interactions. Three different methods -- Alt, Grassberger and Shandas (AGS), Hyperspherical Harmonics and Faddeev-Yakubovsky -- have been used and their respective results are compared. We conclude on a failure of the existing NN forces to reproduce the n-\nuc{3}{H} total cross section.Comment: To be published in Phys. Rev.

    Fractional Laplacian in Bounded Domains

    Full text link
    The fractional Laplacian operator, ()α2-(-\triangle)^{\frac{\alpha}{2}}, appears in a wide class of physical systems, including L\'evy flights and stochastic interfaces. In this paper, we provide a discretized version of this operator which is well suited to deal with boundary conditions on a finite interval. The implementation of boundary conditions is justified by appealing to two physical models, namely hopping particles and elastic springs. The eigenvalues and eigenfunctions in a bounded domain are then obtained numerically for different boundary conditions. Some analytical results concerning the structure of the eigenvalues spectrum are also obtained.Comment: 11 pages, 11 figure

    Solutions of the Faddeev-Yakubovsky equations for the four nucleons scattering states

    Full text link
    The Faddeev-Yakubowsky equations in configuration space have been solved for the four nucleon system. The results with an S-wave interaction model in the isospin approximation are presented. They concern the bound and scattering states below the first three-body threshold. The elastic phase-shifts for the N+NNN reaction in different (S,TS,T) channels are given and the corresponding low energy expansions are discussed. Particular attention is payed to the n+t elastic cross section. Its resonant structure is well described in terms of a simple NN interaction. First results concerning the S-matrix for the coupled N+NNN-NN+NN channels and the strong deuteron-deuteron scattering length are obtained.Comment: latex.tar.gz, 36 pages, 10 figures, 11 tables. To be published in Physical Review

    Few-nucleon systems in translationally invariant harmonic oscillator basis

    Get PDF
    We present a translationally invariant formulation of the no-core shell model approach for few-nucleon systems. We discuss a general method of antisymmetrization of the harmonic-oscillator basis depending on Jacobi coordinates. The use of a translationally invariant basis allows us to employ larger model spaces than in traditional shell-model calculations. Moreover, in addition to two-body effective interactions, three- or higher-body effective interactions as well as real three-body interactions can be utilized. In the present study we apply the formalism to solve three and four nucleon systems interacting by the CD-Bonn nucleon-nucleon potential. Results of ground-state as well as excited-state energies, rms radii and magnetic moments are discussed. In addition, we compare charge form factor results obtained using the CD-Bonn and Argonne V8' NN potentials.Comment: 25 pages. RevTex. 13 Postscript figure

    Conducting research with individuals at risk for suicide: protocol for assessment and risk management

    Full text link
    Published in final edited form as: Suicide Life Threat Behav. 2020 April ; 50(2): 461–471. doi:10.1111/sltb.12602.OBJECTIVE: Suicide prediction, prevention, and intervention are urgent research areas. One barrier for research with high‐risk populations is limited resources to manage risk in a research setting. We describe using the University of Washington Risk Assessment Protocol (UWRAP) to assess and manage suicide risk during phone‐administered eligibility assessments in two clinical trials. METHOD: Study 1 (N = 151) recruited suicidal adults who were not engaged in mental health treatment and Study 2 (N = 135) recruited suicidal adults who used alcohol to regulate emotions. Pre‐ and postassessment ratings of stress, urge to harm self, urge to use drugs/alcohol, and intent to harm self were compared and strategies to manage increased suicide risk following screening interviews were implemented, as indicated. RESULTS: In both studies, average postassessment ratings were significantly lower than pre‐assessment. A minority of participants reported higher ratings on one or more domains; however, following more thorough suicide risk assessment, risk was appropriately managed by providing low‐level interventions (e.g., validation). CONCLUSIONS: Suicide risk in research involving community participants can be managed by using appropriate risk protocols.Published versio

    The Price of WMAP Inflation in Supergravity

    Get PDF
    The three-year data from WMAP are in stunning agreement with the simplest possible quadratic potential for chaotic inflation, as well as with new or symmetry-breaking inflation. We investigate the possibilities for incorporating these potentials within supergravity, particularly of the no-scale type that is motivated by string theory. Models with inflation driven by the matter sector may be constructed in no-scale supergravity, if the moduli are assumed to be stabilised by some higher-scale dynamics and at the expense of some fine-tuning. We discuss specific scenarios for stabilising the moduli via either D- or F-terms in the effective potential, and survey possible inflationary models in the presence of D-term stabilisation.Comment: 15 pages, 6 figures, plain Late

    Total 4He Photoabsorption Cross Section Revisited: Correlated HH versus Effective Interaction HH

    Get PDF
    Two conceptually different hyperspherical harmonics expansions are used for the calculation of the total 4He photoabsorption cross section. Besides the well known method of CHH the recently introduced effective interaction approach for the hyperspherical formalism is applied. Semi-realistic NN potentials are employed and final state interaction is fully taken into account via the Lorentz integral transform method. The results show that the effective interaction leads to a very good convergence, while the correlation method exhibits a less rapid convergence in the giant dipole resonance region. The rather strong discrepancy with the experimental photodisintegration cross sections is confirmed by the present calculations.Comment: LaTeX, 7 pages, 3 ps figure

    Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes.

    Get PDF
    Graphene has unique physical and chemical properties, making it appealing for a number of applications in optoelectronics, sensing, photonics, composites, and smart coatings, just to cite a few. These require the development of production processes that are inexpensive and up-scalable. These criteria are met in liquid-phase exfoliation (LPE), a technique that can be enhanced when specific organic molecules are used. Here we report the exfoliation of graphite in N-methyl-2-pyrrolidinone, in the presence of heneicosane linear alkanes terminated with different head groups. These molecules act as stabilizing agents during exfoliation. The efficiency of the exfoliation in terms of the concentration of exfoliated single- and few-layer graphene flakes depends on the functional head group determining the strength of the molecular dimerization through dipole-dipole interactions. A thermodynamic analysis is carried out to interpret the impact of the termination group of the alkyl chain on the exfoliation yield. This combines molecular dynamics and molecular mechanics to rationalize the role of functionalized alkanes in the dispersion and stabilization process, which is ultimately attributed to a synergistic effect of the interactions between the molecules, graphene, and the solvent.We acknowledge funding from the European Commission through the Graphene Flagship, the FET project UPGRADE (GA-309056), the Agence Nationale de la Recherche through the LabEx project Nanostructures in Interaction with their Environment (ANR-11-LABX-0058_NIE), the International Center for Frontier Research in Chemistry (icFRC), the Belgian National Fund for Scientific Research (FNRS-FRFC), the ERC synergy grant Hetero2D, ERC PoC HiGRAPHINK, and the Engineering and Physical Sciences Research Council grants EP/K01711X/1, EP/K017144/1, and EP/L016087/1.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.jpclett.6b0126
    corecore