8,474 research outputs found
Acoustic interactions between an altitude test facility and jet engine plumes: Theory and experiments
The overall objective of the described effort was to develop an understanding of the physical mechanisms involved in the flow/acoustic interactions experienced in full-scale altitude engine test facilities. This is done by conducting subscale experiments and through development of a theoretical model. Model cold jet experiments with an axisymmetric convergent nozzle are performed in a test setup that stimulates a supersonic jet exhausting into a cylindrical diffuser. The measured data consist of detailed flow visualization data and acoustic spectra for a free and a ducted plume. It is shown that duct resonance is most likely responsible by theoretical calculations. Theoretical calculations also indicate that the higher discrete tones observed in the measurements are related to the screech phenomena. Limited experiments on the sensitivity of a free 2-D, C-D nozzle to externally imposed sound are also presented. It is shown that a 2-D, C-D nozzle with a cutback is less excitable than a 2-D C-D nozzle with no cutback. At a pressure ratio of 1.5 unsteady separation from the diverging walls of the nozzle is noticed. This separation switches from one wall to the opposite wall thus providing an unsteady deflection of the plume. It is shown that this phenomenon is related to the venting provided by the cutback section
Coherent large-scale structures in high Reynolds number supersonic jets
The flow structure of a 50.8 mm (2 in) diameter jet operated at a full expanded Mach number of 1.37, with Reynolds numbers in the range 1.7 to 2.35 million, was examined for the first 20 jet diameters. To facilitate the study of the large scale structure, and determine any coherence, a discrete tone acoustic excitation method was used. Phase locked flow visualization as well as laser velocimeter quantitative measurements were made. The main conclusions derived from this study are: (1) large scale coherent like turbulence structures do exist in large Reynolds number supersonic jets, and they prevail even beyond the potential core; (2) the most preferential Strouhal number for these structures is in the vicinity of 0.4; and (3) quantitatively, the peak amplitudes of these structures are rather low, and are about 1% of the jet exit velocity. Finally, since a number of unique problems related to LV measurements in supersonic jets were encountered, a summary of these problems and lessons learned therefrom are also reported
A study of the transmission characteristics of suppressor nozzles
The internal noise radiation characteristics for a single stream 12 lobe 24 tube suppressor nozzle, and for a dual stream 36 chute suppressor nozzle were investigated. An equivalent single round conical nozzle and an equivalent coannular nozzle system were also tested to provide a reference for the two suppressors. The technique utilized a high voltage spark discharge as a noise source within the test duct which permitted separation of the incident, reflected and transmitted signals in the time domain. These signals were then Fourier transformed to obtain the nozzle transmission coefficient and the power transfer function. These transmission parameters for the 12 lobe, 24 tube suppressor nozzle and the reference conical nozzle are presented as a function of jet Mach number, duct Mach number polar angle and temperature. Effects of simulated forward flight are also considered for this nozzle. For the dual stream, 36 chute suppressor, the transmission parameters are presented as a function of velocity ratios and temperature ratios. Possible data for the equivalent coaxial nozzle is also presented. Jet noise suppression by these nozzles is also discussed
A New Receiver for a Digital Passband System with CPSK Modulation: The STTS-CPSK Receiver
671-677Telecommunications industry is expanding vastly with huge infrastructure requiring huge sums of money for investment1,2. Reliability of the system3,4, efficient utilization of resources1,2, and safety of the users and the environment are paramount towards providing high quality efficient telecom services at affordable prices1,2. This paper deals with an important scientific investigation for the development of the STTS-CPSK receiver for pass band applications5,6 . This is a new receiver being developed with the inspiration from the previously developed STTS-MF receiver for baseband applications. This is carried out considering transmission of p-q signals (p-q signals represent correlated digital signals) through AWGN channel. Performance-comparison studies of the conventional STS-CPSK receiver and the new STTS-CPSK receiver are carried out for a wide range of signal and system parameters 0.0 ≤ p,q ≤ 1.0 and-10 dB ≤ SNR ≤ 10 dB. Performance superiority of the STTS-CPSK receiver is established for 0.0 ≤ p,q ≤ 1.0, -2 dB ≤ SNR ≤ 10 dB, and illustrated. Thus, this work has important implications towards efficient utilization of bandwidth, and also in greening of communication technologies which is highly needed. The latter is because the performance-improvement, achieved in case of STTS-CPSK receiver, can be translated into an equivalent advantage of EMF-reduction appropriately
Enhancing and Sustaining Pulse Production and Farmer Incomes in the TRFA Statess: Issues of Stray Animal Grazing and Value Chain Integration for Small and Marginal Farmers
Pulses are an integral component of a sustainable crop-production system, as these crops are capable of biological nitrogen fixation and have low water requirements and a high capacity to withstand changing weather conditions. Pulses are widely grown and consumed in India owing to their high nutritional value, especially as a source of protein. While India contributes 25 percent of the world’s pulse production, its domestic demand far exceeds the available supply. This has led to increasing pressure on prices, accessibility across different income strata, and the country importing pulses for domestic consumption
Tone-excited jet: Theory and experiments
A detailed study to understand the phenomenon of broadband jet-noise amplification produced by upstream discrete-tone sound excitation has been carried out. This has been achieved by simultaneous acquisition of the acoustic, mean velocity, turbulence intensities, and instability-wave pressure data. A 5.08 cm diameter jet has been tested for this purpose under static and also flight-simulation conditions. An open-jet wind tunnel has been used to simulate the flight effects. Limited data on heated jets have also been obtained. To improve the physical understanding of the flow modifications brought about by the upstream discrete-tone excitation, ensemble-averaged schlieren photographs of the jets have also been taken. Parallel to the experimental study, a mathematical model of the processes that lead to broadband-noise amplification by upstream tones has been developed. Excitation of large-scale turbulence by upstream tones is first calculated. A model to predict the changes in small-scale turbulence is then developed. By numerically integrating the resultant set of equations, the enhanced small-scale turbulence distribution in a jet under various excitation conditions is obtained. The resulting changes in small-scale turbulence have been attributed to broadband amplification of jet noise. Excellent agreement has been found between the theory and the experiments. It has also shown that the relative velocity effects are the same for the excited and the unexcited jets
Resiliently evolving supply-demand networks
Peer reviewedPublisher PD
Negative-weight percolation
We describe a percolation problem on lattices (graphs, networks), with edge
weights drawn from disorder distributions that allow for weights (or distances)
of either sign, i.e. including negative weights. We are interested whether
there are spanning paths or loops of total negative weight. This kind of
percolation problem is fundamentally different from conventional percolation
problems, e.g. it does not exhibit transitivity, hence no simple definition of
clusters, and several spanning paths/loops might coexist in the percolation
regime at the same time. Furthermore, to study this percolation problem
numerically, one has to perform a non-trivial transformation of the original
graph and apply sophisticated matching algorithms.
Using this approach, we study the corresponding percolation transitions on
large square, hexagonal and cubic lattices for two types of disorder
distributions and determine the critical exponents. The results show that
negative-weight percolation is in a different universality class compared to
conventional bond/site percolation. On the other hand, negative-weight
percolation seems to be related to the ferromagnet/spin-glass transition of
random-bond Ising systems, at least in two dimensions.Comment: v1: 4 pages, 4 figures; v2: 10 pages, 7 figures, added results, text
and reference
Phase transitions in diluted negative-weight percolation models
We investigate the geometric properties of loops on two-dimensional lattice
graphs, where edge weights are drawn from a distribution that allows for
positive and negative weights. We are interested in the appearance of spanning
loops of total negative weight. The resulting percolation problem is
fundamentally different from conventional percolation, as we have seen in a
previous study of this model for the undiluted case.
Here, we investigate how the percolation transition is affected by additional
dilution. We consider two types of dilution: either a certain fraction of edges
exhibit zero weight, or a fraction of edges is even absent. We study these
systems numerically using exact combinatorial optimization techniques based on
suitable transformations of the graphs and applying matching algorithms. We
perform a finite-size scaling analysis to obtain the phase diagram and
determine the critical properties of the phase boundary.
We find that the first type of dilution does not change the universality
class compared to the undiluted case whereas the second type of dilution leads
to a change of the universality class.Comment: 8 pages, 7 figure
Asymptotically Optimal Approximation Algorithms for Coflow Scheduling
Many modern datacenter applications involve large-scale computations composed
of multiple data flows that need to be completed over a shared set of
distributed resources. Such a computation completes when all of its flows
complete. A useful abstraction for modeling such scenarios is a {\em coflow},
which is a collection of flows (e.g., tasks, packets, data transmissions) that
all share the same performance goal.
In this paper, we present the first approximation algorithms for scheduling
coflows over general network topologies with the objective of minimizing total
weighted completion time. We consider two different models for coflows based on
the nature of individual flows: circuits, and packets. We design
constant-factor polynomial-time approximation algorithms for scheduling
packet-based coflows with or without given flow paths, and circuit-based
coflows with given flow paths. Furthermore, we give an -approximation polynomial time algorithm for scheduling circuit-based
coflows where flow paths are not given (here is the number of network
edges).
We obtain our results by developing a general framework for coflow schedules,
based on interval-indexed linear programs, which may extend to other coflow
models and objective functions and may also yield improved approximation bounds
for specific network scenarios. We also present an experimental evaluation of
our approach for circuit-based coflows that show a performance improvement of
at least 22% on average over competing heuristics.Comment: Fixed minor typo
- …