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PREFACE
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design the nozzle and relevant test configurations.
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facility with Dr. Jones a number of times during the course of this program and
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The Air Force monitors for this progrron. were Major (CF) R. G. Foster and
Captain (CF) J. E. P. Lacasse, AEDCIDOTP.
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SECTION 1

INTRODUCTION

1.1 Back~O\md

Altitude test cells are routinely used to test aero-engines during their development phases.

Often, these cells are also used to test propulsion system enhancements after entering service. In a

typical installation, the engine is contained in a large test cell where the engine inlet is supplied with

conditioned air through a direct connection to the test cell air supply system. The engine inlet is

aerodynamically isolated from the test cell. The test cell is maintained at the desired altitude

pressure through the combined action of the facility exhaust compressors and the pumping action

of the engine exhaust as it enters the test cell exhaust gas management system (EGMS) which, in

its most common form, is a cylindrical diffuser. In such an installation, the high energy engine

exhaust stream may contain acoustic and/or fluid dynamic characteristics that can couple with the

resonant modes of the test cell and/or the (EGMS) to produce strong undesirable pressure

fluctuations.

In isolated full-scale engine tests conducted at Arnold Engineering Development Center

(AEDC) in Tennessee it has become apparent that, for certain operating conditions and test

geometries, when engines exhaust supersonically into the EGMS, high intensity discrete tones

(whistles) are heard (ref. 1.1). Sound pressure levels as high as 170 dB have been measured

within the facility exhaust system. These whistles appear to be unrelated to the screech commonly

observed in free jets and whose frequency can now be calculated with a high degree of accuracy

(Ref. 1.2).

When these high intensity tones are heard, it appears that the phenomenon responsible for

these tones also is directly or indirectly responsible for producing large vibrations in the test cells

and other related test facility ducting (ref. 1.1).

The above-described phenomenon has been observed for both axisymmetric, under

expanded nozzles and for two-dimensional, convergent-divergent (2-D, C-D) nozzles. For the 2

D, C-D nozzle, it appears that for certain flow operating conditions, the whole jet body physically

deflects in the manner of a fluidic jet. This is also accompanied by a high amplitude (in excess of

165 db) discrete tone.

The physical mechanisms responsible for the discrete tones described above and their

interactions with the flow needs to be understood so that a corrective action can be taken in a timely

manner. Or if it is known in advance as to what range of flow conditions for given geometric test
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configuration produces an unacceptable interaction, then that range of flow conditions can be

avoided until an appropriate control methodology has been implemented.

1.2 Program objectives

The overall objective of this effort thus is to develop an understanding of the physical

mechanisms involved in the flow/acoustic interactions experienced in the full-scale altitude engine

test facilities of AEDC. Such an understanding will contribute to the identification of control

methods and/or design practices to avoid such interactions.

The specific objectives of the program are three-fold:

(1) Model Jet Diffuser Experiment

Conduct model jet experiments with model-scale axisymmetric convergent

nozzles in a test set-up that will simulate a supersonic jet exhausting into a

cylindrical diffuser. Conduct these experiments with a view to obtain better

understanding ofjet flow/sound interactions in a ducted environment.

(2) JetlDiffuser Stability Calculations

Investigate the ability of available aeroacoustic computational methods to

predict the potential for acoustic interaction between a supersonic plume and

a cylindrical diffuser. In particular, determine the influence of mean flow on

acoustic modes of a cylindrical diffuser and develop computer codes for the

determination of shear layer instability waves in a ducted environment.

(3) Plume Sensitivity

Conduct experiments to assess the sensitivity of a two-dimensional

convergent-divergent nozzle to external excitation at scale frequencies

commensurate with those experienced in acoustic interactions at AEDC.

The first objective was accomplished through acquisition of detailed flow visualization and

acoustic measurements of a 1:48 scale-model test facility specifically designed and fabricated for

this task.

The theoretical effort under the second objective was directed by the experimental findings.

The "plume sensitivity" experiments under the third objective consisted of only flow

visualization.
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1.3 Report Outline

The model-jet diffuser test facility and experiments are first described in Section 2. This is

followed, in Section 3, by a description of the theoretical calculations and comparisons with

experimental data. The "plume sensitivity" measurements for the 2-D, C-D nozzle are then

presented in Section 4. Finally, the overall conclusions and recommendations are provided in

Section 5.

It should be noted that throughout the report the words "diffuser" and "ejector" are used

interchangeably. For all experimental observations reported, the exhaust diffuser was operated in

an unstarted condition (Le., subsonic flow always existed in portions of diffuser allowing pressure

communication from entrance to exit). The term "ducted" indicates the complete sub-scale facility

consisting of the jet, the diffuser, the test cell sections surrounding the jet nozzle and downstream

of the jet nozzle.
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SECTION 2

MODEL JETIDIFFUSER EXPERIMENTS

2.1 Objectiv\(

The objective of the effort described in this section was to employ a sub-scale cold flow

facility to model a full-scale configuration for which an interaction had been experienced at AEDC.

During the full-scale interaction, two high amplitude discrete frequencies were experienced, 85 Hz

and 140 Hz. A model-scale axisymmetric convergent nozzle was used in a test set-up to simulate a

supersonic jet exhausting into a cylindrical diffuser. These experiments were conducted with a

view to obtain a better understanding ofjet flow/sound interactions in a ducted environment.

2.2 Model Confi~uration

Based upon the specifications and sketches provided by personnel at AEDC, the model jet

diffuser configuration shown in Figures 2.1, 2.2 and 2.3 were designed and fabricated. The

nozzle is connected to an 18 inch diameter plenum/muffler (see ref. 2.1 for details). The air to the

plenum is provided by a compressor capable of providing 17 Ibm/sec of dry air continuously. The

jet exhausts from a 0.484 inch diameter round convergent nozzle attached to a 2 inch inner

diameter (ill) supply duct. The test cell has an ill of 6.50 inches and is made out of transparent

acrylic. To simulate variations in test cell secondary or cooling flow, the test cell is connected to a

secondary air supply through four inlets connected to a manifold. The test cell, along with the

manifold, can be slid over the jet exhaust supply duct. This allows one to control the distance

between the jet exit and the cylindrical diffuser (ejector) located downstream of the jet exit.

The supply duct is attached to an existing 18-inch diameter muffler/plenum at GTRI's flow

visualization facility. Various photographic views ofthe facility are shown in Figure 2.4.

Figure 2.4a shows only the free-jet configuration. The framework shown in this picture is

a three dimensional traverse arrangement that allows the positioning of a microphone or a pitot

probe at suitable locations around the jet exit for various appropriate measurements.

Figure 2.4b and 2.4c show the complete configuration of the jet, diffuser and the test cell.

The diffuser section and the secondary supply manifold is seen clearly in the side view of the

facility in Figure 2.4c.

Two separate cylindrical ejectors were designed. The inner diameter of each ejector is 2.62

inches. The ratios of the length of the ejector to ejector diameter of the two ejectors are 1 and 3,

respectively. The circular disk that supports the ejector has two 0.25 inch diameter through bores
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MICROPHONE
AEOC-TR-91-20

FLOW VISUAUZAnON
OPTICS

(a)

FREE JET

(Il)

DIFFUSER tEJECTOR)

(e)

SECONDARY
====-- FLOW

Figure 2.4 Axisymmetric jet/diffuser configuration: (a) free jet alone, (b) and (c) ducled jet.
(Part of the flow visulalization optics can also be seen.)
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in two orthogonal planes. These bores are incorporated to allow laser beams to enter the ejector.

A cylindrical lens is mounted at the junction of one of these bores and the ejector inner wall. This

provides a laser sheet for flow visualization. A number of 0.25 inch diameter inlets are added to

the test cell wall and the secondary supply manifold so that either smoke can be added into the test

cell directly from these inlets, or smaller tubes carrying smoke or water can be injected into the test

cell and be positioned at critical locations such as at the lip of the jet nozzle. Suitable pressure ports

have been added to both the ejector wall and the test cell wall to measure static pressures.

To measure velocity profiles at the exit of the ejector, a 0.25 inch by 1.25 inch slot is

provided on the test cell wall to accommodate pitot static probes. The methods of flow

visualization and microphone mountings will be described separately later with the results for flow

visualization and acoustic measurements.

It should be noted that the scale factor for this sub-scale facility with the smaller ejector is

1/48. The ejector in the full-scale facility included a divergent conical section whereas that used

here is a straight circular section. Thus, the sub-scale facility with the smaller ejector represents a

generic model of the full-scale configuration maintaining common nozzle and ejector area and

length ratios. The longer ejector was included to allow a limited assessment of variations in model

geometry.

2.3 Test Conditions

The majority of the tests were carried out first with the free jet and then with the ducted jet.

The free jet was operated at plenum pressure ratios corresponding to fully-expanded mach numbers

of 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, and 1.7. The same plenum pressure ratio, with respect

to the ambient pressure, was maintained for the ducted jet. (As discussed later, it provided minor

differences in the fully-expanded jet exit mach numbers for the larger ejector.) The nozzle exit was

located at a distance of 0.3 nozzle diameters from the ejector inlet for all tests.

2.4 Flow Visualization

A number of flow visualization schemes were tried to examine the flow behavior in the

ejector and on the walls of the test cell. These schemes included:

(1) Water injection combined with laser sheet and laser scattering.

(2) Oil-flow visualization.

(3) Laser schlieren visualization.

To improve the quality of the flow visualization, especially of the ducted jet near its exit, two

transparent flat-walls were provided in the test cell upstream of the disc that held the ejector. This

can be seen in Figure 2.5.

13



Figure 2.5 Test cell with partly flattened walls.
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The approach for each of the three methods of flow visualization and the results therefrom

is presented below.

2.4.1 Water Injection

As shown in Figures 2.6 through 2.11, plastic bottles filled with colored water were used

to supply the fluid for visualization. These bottles were equipped with small plastic tubes as

shown in these figures. One end of these tubes was connected to the bottle, whereas the other was

placed at a suitable location in the vicinity of the site of flow visualization. The lower than ambient

pressure inside the ejector and in the vicinity of the jet allowed the water to be sucked through the

tubes for easy flow visualization. The flow was visualized with the help of a laser sheet or a

cylinder of laser beam normally used in schlieren visualization in the same test facility.

Most useful information about the flow behavior was obtained by examining the flow

visualization videos taken during the tests.

A detailed examination of the flow visualization by water injection revealed that the jet

appeared to contain a rotational component downstream of the ejector inlet. In addition, it appeared

that the jet might have been impinging on the ejector wall surface some distance downstream of the

ejector inlet. To understand the nature of this flow phenomenon somewhat better, the oil-flow

visualization described below was obtained.

2.4.2 Oil Flow Visualization

In the video pictures taken by injecting water droplets in the jet and by illuminating the jet

flow with laser light, it appeared that the jet just downstream of the ejector inlet had a swirling

(spiral) component of velocity. It was not absolutely certain in these flow visualization studies,

however, if the jet was actually touching the diffuser inner wall or not. It was also not quite clear

if there was any back-flow towards the jet exit along the ejector wall. An oil-flow surface

visualization method was, therefore, implemented. Oil mixed with fluorescent dye was used to

coat the inner surface of the diffuser. Figure 2.12 shows a view of the flow behavior in the

vicinity of the nozzle and the diffuser inlet for a jet Mach number of 1.7 for the larger diffuser

ejector with L/D=3. Note that the oil was smeared along the length of the diffuser only over the

semi-circular portion facing the reader. On turning the flow on, the whole surface, including the

side onto which oil was not applied was found to be covered by the dye indicating that the flow

over the surface was indeed moving in a spiral manner.

The presence of the spiral oil flow pattern is abundantly clear in the photographs shown in

Figure 2.12. In fact, each time a new coat of oil dye was applied, the upstream test-cell surface

15



AEDC·TR·91 ·20

(al

(b)

Figure 2.6 Nozzle and open lest cell; (a) along with water bottles u,ed
in visualizing the flow, (b) close up of tubes and flat plate.
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Figure 2.7 Experiment with water dropped into flow.
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Figure 2.8 Boule used for injecting water into top half of nozzle.
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Figure 2.9 Bottle used for injecting water into static pressure ports of ejector.
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Figure 2.10 Laser sheet passed through jet cross section.

Figure 2.11 Test cell wall flow visualization.

20
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area surrounding the' main jet nozzle always appeared to get sputtered by oil dye that moved to the

upstream locations from the downstream locations. The presence of the dye pigments on the

interior wall of the test cell is also evident in Figure 2.12. These visualizations also indicated that

the flow over the wall surface was indeed moving from the diffuser inlet towards the upstream

direction. The behavior of the flow along the complete length of the ejector duct is visualized in

Figures 2.13, 2.14, and 2.15 for three Mach numbers, namely, 1.7, 1.4, and 0.8. For each Mach

number, three photographs are shown. As mentioned above and shown in the sketch on the top

left corner of these three figures, the oil and dye was smeared over only one half of the diffuser

inner wall surface (side A). Figure (a) is a typical picture of the oil dye coated over diffuser wall

surface before the flow was turned on. Views of both sides (side A and side B) of the diffuser are

then shown after the flow was turned on. It is seen that much of the dye pigments has moved from

the downstream locations and has actually collected in the upstream region. In fact, the spiral

motion appears to be present only up to the plane of the disc to which the diffuser is mounted. At

further downstream locations, flow appears to straighten out. It may well be that, at this location,

the jet actually touches the inner surface of the diffuser. Other likely phenomenon is that, at this

location, the flow moving upstream along the surface may meet the flow moving downstream

(stagnation region). Additional quantitative data need to be acquired to understand the precise

nature of the flow behavior inside the diffuser.

A comparison of the flow patterns for the three Mach numbers indicates that the angle of

the spiral is a strong function of the jet Mach number. The lower the Jet Mach number, the smaller

is the angle of the spiral, until at M =0.8, the flow is almost straight.

The tubes shown in Figure 2.12 (b) were used to inject water droplets for flow

visualization of the main jet. These tubes were left in place for the present oil-flow visualizations.

(The water injection was prohibited for this case.) To ensure that the tubes themselves were not

responsible for the spiral pattern, additional measurements need to be made by removing the tubes.

Flow visualization downstream of the diffuser plate and within the test-cell duct was also

made by smearing the oil dye all around the inner surface of this duct. These visualizations for a

range of operating jet pressure ratios and nominal Mach numbers are shown in Figures 2.16 thru

2.20. In each figure, the data for identical reservoir pressure is compared for the shorter (LID=I)

and the longer (LID=3) diffusers. Here, data for five Mach numbers, namely, 1.7, 1.4, 1.3, 1.1,

and 0.8 are presented. With few exceptions, a spiral pattern is seen in most pictures here also.

Most of the dye pigments appear to have collected on the wall surface of the duct in the plane of the

diffuser exit.
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Figure 2.1: Ejector flow visualization. ( ~, = 4.936. Mj ~ 1.7. LID = .')

25

NO FLO"
['IDE A)

IInll ~LO\l
( !DF Al

II1TlI FLOI\'
(Slll~ RI



SIDF B

OIL APPLIED TO
THiS SIllE O'iLY

;/

SIDE A

(a)

o FLOW
( IDE A)

(b)

(c)

Figure 2.14 Ejector flow visuulizution. ( ~1 = 3.1 ~2, Mj = 1.-1 L [) "

27

1111 H fLOII
('WE A)

IIIIHfLO\\
(SIDE B)



'ID!> 8

o

OIL APPLIED TO

____T_mS S/"'LY

IDF\

fa)

AEDC-TR·91·20

o FLOW
(SIDE A.)

(b)

(e)

hgure 2.15 EJ,clor llow vlslIu]izmion. ( ~1 = J.52, Mj > ".~. LiD ~ .1)

29

II lTll FLOW
(~llJf Al

" ITH F1.0I1
t-mJE 8\



AEOC·TR·91-20

~....,

n
~
-e
'"0-
-.i
II

.v'
~

c::
0

'::1
OS

,!j
OJ

"~';:

~

~
0

c::

II
~

8
" ;;;
~

"

~
!-'

'"--- N

~
e
"bO

u:

31



AEDC·TR·91·20

~

"':-H
~
N
00-'"II
W'
~

C
0
'0

13
.~

'"::>'"'>
~

~
0

o::l

II
:::l

~
...

-e ()
~

'"...

~
Eo-<

.....--- <'i

~ ~
iI:

33



AEDC-TR-91-20

~

"1
~

"~-
~

r--
t-;
N

11

>V'
~

C
0
'0

.~

'""'"'S:

~
~
0

<=:

"
<u

~ "" -~ '"<u

Q
~

00-- N

~
~

"""~

35



AEDC·TR-91-20

~

-'
R

~
.,;
'"
<-i
II

UJ'
~

c::
0

"0
OS
N

:;;
::>
'"";;

~

~
0c::

II
~

OJ
0

~ ~

'""

~
f-
a--

-........ <-i

~
~

61
iE

37



AEDC-TR-91-20

~

00

0
/I

::E
"~I
"1

II

u.1'
~

C
0

·0

'".!:l

'":>~"S
~

~
0

c:1-
~

<;
OJII .s -~
"f-<

~
0
N
N-- e

~
::l
bI)

ii:

39



AEDC-TR-91-20

The flow patterns are arguably a function of jet Mach number and the diffuser length.

These results are expected to provide considerable help in planning the direction of any future

quantitative measurements to understand the flow phenomenon associated with ducted jets and the

nature of resulting flow/acoustic interactions.

2.4.3 Phase-Locked Laser Schlieren Flow Visualization

The now-popular technique of phase locked flow visualization (refs. 2.1-2.3) was used to

visualize the evolution of instability waves in the jet. A Helium-Argon laser was used as the

source of light. A microphone located in the plane of the exit of the free jet was used to trigger the

laser strobe in the manner described by Ahuja et al (refs. 2.1 - 2.3) to freeze the motion of the self

exc~ted instability waves in the underexpanded supersonic jets. In the present study, such

photographs could be obtained only for the free-jet. The double layered round surfaces of the

ejector and the outer test cell proved to be a hindrance in visualizing the flow within the diffuser

using this technique.

Figures 2.21 through 2.28 show the phase-locked schlieren flow visualizations of the free

jet at fully-expanded Mach numbers of 1.1, 1.2, 1.27, 1.3, 1.34, lA, 1.5, and 1.6. On each

photograph are provided the relevant jet operating data. PT refers to the reselVoir gauge pressure,

M refers to the calculated fully-expanded Mach number, fs refers to the strobe frequency, Ls refers

to the sound pressure level (SPL) at the strobe frequency, and R and e refer to the distance and

polar angle of the microphone from the center of the free jet nozzle. Note that, in most cases, the

strobe frequency is the same as the dominant screech frequency.

It is seen from these schlieren photographs that, at the lower Mach numbers, the instability

waves start out to be axisymmetric, and thus they correspond to n = 0 or axisymmetric mode (see

Figure 2.22 and 2.23). At the smallest Mach number, the screech amplitude was rather weak.

This is why it was difficult to capture a well-defined wave at M = 1.1 (see Figure 2.21).

Likewise, at M = 1.3, the modes of instability waves appeared to switch back and forth from n =0

(axisymmetric) to n = 1 (helical or flapping mode). It was, therefore, difficult to lock on to a

dominant tone and visualize a well-defined structure in the flow (see Figure 2.24). At the higher

Mach numbers, however, the nonaxisymmetric mode (n=l) appears to dominate as seen in Figures

2.25 through 2.28.

As seen later in Section 3, these data provided considerable guidance in developing and

validating the theoretical calculations.
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ROUND NOZZLE, FREEJET
PT= 16.0 psig
M= 1.1
fs= 20, ) 17 Hz
Ls= 122 dB
R = 3" 8=90

Figure 2.21 Laser schlieren flow visualization.

ROUND NOZZLE, FREEJET
P

T
= 20.07 psig

M= 1.2
fs= 16,800 Hz
Ls= 129.3 dB
R = 3" 8=90

Figure 2.22 Laser schlieren flow visualization.
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ROUND NOZZLE, FREEJET
Pr= 23.87 psig

l M= 1.27
fs= 21,867Hz
Ls= 123.3 dB
R = 3" 9=90

Figure 2.23 Laser schlieren flow visualization.

ROUND NOZZLE, FREEJET
"r= 24.95 psig
M= 1.3

. f s= 10,680 Hz
Ls= 118.5 dB
R = 3" 9=90

Figure 2.24 Laser schlieren flow visualization.
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ROUND NOZZLE, FREEJET
, PT= 27,16 psig
IM= 1,34

fs= 11,742 Hz
Ls= 129,9 dB
R = 3" 8=90

Figure 2.25 Laser schlieren flow visualization.

ROUND NOZZLE, FREEJET
PT= 30,74 psig
M= 1.4 '

fs= 10,992Hz
Ls= 143,1 dB
R = 3" 8=90

Figure 2.26 Laser schlieren flow visualization.
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ROUND NOZZLE, FREEJET
PT= 37.63 psig
M= 15
fs= 9,930 Hz
Ls= 149.4 dB
R = 3" 8=90

Figure 2.27 Laser schlieren flow visualization.

ROUND NOZZLE, FREEJET
PT=458 psig
M= 1.6
fs= 8.930 Hz
Ls= 149.2 dB
R = 3" 8=90

Figure 2.28 Laser schlieren flow visualization.
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2.5 Initial Acoustic Diagnostics for the Ducted Jet.

In the full-scale tests at AEDC, the high intensity tones were measured with the secondary

mass flow rate maintained at 10 percent of that of the main jet. To establish how critical the

presence of the secondary mass-flow was to the character of the measured noise spectra, acoustic

data for the plume operated at fixed jet exit Mach numbers were acquired for a range of secondary

mass flow rates. The secondary mass flow rates were as high as 100 percent of those of the

primary mass flow rates. It was found that the presence of the secondary flow made little

difference to the measured noise spectrum. This was found to be true for both the shorter and the

longer ejector.

The data for the longer ejector with Lej/Dej = 3 are presented below.

The acoustic data were acquired by a 1/4 inch Biuel and Kjaer (B&K), type 4136

microphone, in conjunction with B & K Cathode follower (type 2619). The microphone for the

acoustic measurements with the diffuser and test cell configuration was located in the plane of the

test cell exit at a distance of 12 nozzle exit diameters (12 inches) from the jet center line. All of the

measurements presented here were acquired with the nozzle located at 0.15 inches from the ejector

inlet (xej/Dej = 0.3).

Typical results are shown in Figures 2.29 and 2.30. Notice that all of the pertinent

information appears on the top right comer of each plot. Here Dej refers to the ejector inner

diameter, and De refers to the nozzle exit diameter. In Figure 2.29, spectra for Mj=1.3 are
• •compared for no secondary mass flow with m2 = 45% mI. Likewise, in Figure 2.30, spectra for

Mj = 1.6 are compared for ril2= 80% mI. Clearly, identical noise spectra are obtained with and

without the secondary flow. Such insensitivity of the noise characteristics to the secondary air

flow is also consistent with results from the full-scale facility.

In view of these findings, it was decided to disconnect the secondary flow supply. The

inlet to the secondary manifold was then blanked off, and all of the remaining data presented in this

report are those with no secondary mass flow (Q = 0).

2.6 Free Jet Versus Ducted Jet - Acoustic Data

The acoustic spectra on an exterior microphone were compared for the free jet with those

for the ducted jet. Typical results for a range of plume Mach numbers are shown in Figures 2.31.

As before, all pertinent information appears on the top right comer of each plot. For these

comparison plots, the microphone position with respect the main nozzle exit remained unchanged;

the ejector and the test cell were simply added to the free-jet configuration. Any changes observed
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in the noise spectra are thus those due to the addition of the ducting. Our goal is to identify if these

changes are due to enhanced flow/sound interaction, by pure duct resonance, or by a combination

of the two, or by some other mechanism.

The following observations are made from these results:

1. Effect of adding the ejector and the test cell is to produce a low frequency tone

(at 3.6 kHz in Figure 2.31a) and also to increase the broadband noise considerably at

all Mach numbers. In fact the increase in broadband noise is as much as 8 decibels

at M =1.4.

2. Since the broad band noise has increased by a rather large amount, the so called

"broadband amplification" may well be the cause of this. If so, this must be produced

by very high sound pressure levels and attendant excitation of instability waves within

the ejector.

The far-field acoustic data presented above did not display particularly unusual discrete

tones in the measured spectra. The broadband noise was, however, found to increase considerably

at all frequencies. It was speculated that it is possible that there may exist discrete tones that may

not be propagating to the far field. It was, therefore, decided to make measurements by a l/4-inch

condenser microphone mounted flush with the wall of the test cell. An existing hole in the test cell

section located about 111 degrees with respect to the downstream jet axis was utilized to mount the

microphone. The microphone was thus located just upstream of the nozzle exit plane. For

comparison, identical data were acquired with the microphone located exactly at the same location

with respect to the nozzle exit butwith the free jet alone. This was done both for the shorter and

the longer ejector. The data were acquired for a total of nine fully-expanded jet Mach numbers of

the free jet, namely, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, and 1.7. It should be noted that, with

the ejector and the test cell in place, the quoted Mach numbers were calculated assuming the back

pressure to be the same as that of the ambient even though there was some reduction in the back

pressure. Data for constant operating pressure ratio, with the true back pressure accounted for, are

discussed in Appendix I. As seen below, this fact does not seem to change the conclusions from

our measurements about the observed phenomenon. The main effect on the spectral character is

one of shifting the screech frequencies to a somewhat lower values for the ducted jet. This is

because the true Mach numbers are some what larger than those quoted in the figures below due to

the back pressure being somewhat lower than the ambient pressure.

The narrow band noise spectra for the smaller ejector for the above mentioned nine Mach

numbers are shown in Figures 2.32 through 2.40. Likewise, similar data for the longer ejector are
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AEDC-TR-91-20

shown in Figures 2.41 through 2.49. In each figure, the free jet noise data are compared with the

ducted jet noise data at the same jet plenum pressures.

The following observations are noteworthy about the in-duct acoustic signatures:

1. As for the far field acoustic spectra, the in-duct signatures also show 8 to 10 decibels

broadband noise increase at all frequencies.

2. Noise at the screech frequency and its harmonics increases by more than 10 decibels

at most Mach numbers. This increase in amplitude is believed to be due to the fact that

most of the energy at this frequency is trapped within the reverberant interior of the test

cell.

3. A well-defined and high-amplitude discrete tone is obtained between 3 and 5 kHz.

This frequency is mostly about 4.2 kHz for the smaller ejector and about 3.4 kHz for

the larger ejector. It should be recalled that no dominant tone was observed in the far

field spectra Purely based upon geometrical scaling of the ejector diameter, a tone at a

frequency of 4 kHz was expected to be observed. (The frequency for the full-scale facility

was 85 Hz. The scale factor was 48.)

4. An additional set of tones is seen at lower frequencies for both ejectors between

DC and 2 kHz. The levels of these tones are higher for the longer ejector.

5. A comparison of the in-duct noise spectra for the shorter and the longer ejector

indicates that with the exception of the very low frequency tones alluded to under item

4 above, changing the ejector length has little effect on the. general features of the

measured spectra. The broadband noise levels essentially remain unchanged. Even the

levels of the above-noted frequency between 3 and 5 kHz are almost the same for the

two ejectors.

Based upon these observations, it appears that the frequency between 3 and 5 kHz, may

well be associated with the duct resonance. This conclusion is derived from the fact that this

frequency essentially did not change on changing the jet Mach number. Changing the duct length

by a factor of three changed this frequency from 4.2 kHz to 3.4 kHz. The bandwidth of the

spectral analysis over a frequency range of 100 kHz was 200 Hz. The fact that the frequency

remained almost constant for a given ejector for all jet mach numbers, indicates that this frequency

is associated with some form of duct resonance and is not related to excitation of flow instability

modes. This explanation also seems to fit with the arguments based upon calculations of the
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AEDC-TR-91-20

resonances associated with nonnal acoustic modes of the jet/diffuser as described in the next

section on theoretical results. Also additional tests perfonned in the absence of flow and in the

presence of artificially generated sound, further confirmed the presence of duct resonance. This is

described below.

2.7 Further Tests to ConfInn Duct Resonance

To establish that the low frequency tones in the frequency range 3-4kHz were indeed due to

some fonn of duct resonance, artifIcially generated sound was used to excite acoustic duct modes

in the test confIguration in the absence of any flow. In particular, the following four tests were

perfonned:

Test 1:

An acoustic driver was mounted in the manner shown in Figure 2.50 at the inlet of

the secondary air supply manifold. Broadband noise was injected into the test-cell.

Test 2:

An acoustic driver was connected to an inverse conical horn. The horn was 1 inch

in diameter at the driver source opening and converged to a 1/4 inch diameter (See

Figure 2.51 a). A 1/4 inch diameter tube extension was then connected to the

smaller end of this horn. The tube was attached to the 1/4 inch diameter bore in the

disc holding the ejector so as to inject sound inside the ejector duct. A photographic

view of this arrangement is shown in Figure 2.51 (b).

Test 3:

An acoustic driver was placed outside the test cell exit and in-duct microphone

noise spectra were measured with and without the test-cell ducting in place

(confIguration not shown).

Test 4:

A jet exhausting from a 1/2 inch diameter tube was placed outside the test cell

exhaust in the manner shown in Figure 2.52. In-duct noise spectra for the free jet

and the ducted confIguration were compared to identify acoustic resonances.

In each case, strong tones were obtained at the lower frequencies for which duct

resonance was suspected in the with-flow data presented earlier. Typical data are

shown in Figures 2.53 (a) and (b) for Test 1, Figures 2.54 (a) and (b) for Test 2,

Figure 2.55 for Test 3, and Figure 2.56 for Test 4.
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Figure 2.50 Acoustic driver mounted at the secondary
air supply inlet.
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Acoustic Driver
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Figure 2.51 (a) The point sound source.
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Figure 2.51 (b) Point sound source injected
into the ejector.
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Figure 2.52 A small jet exhaust used to excite duct resonance.
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For Test 1, with the driver mounted at the secondary flow inlet, Figure 2.53a shows a comparison

of the noise spectra, analyzed to a frequency range of 100 kHz, between the unducted and the

ducted configuration. Data for the larger ejector are shown. As expected, noise at all frequencies

increased on installing the ducted configuration, as the noise that would normally radiate in all

directions is now confmed within the reverberant interior of the test cell. But notice that few

additional tones have also been excited including those at 4.1 kHz and 5.1 kHz. These are

believed to be those due to duct resonance. This is seen in somewhat more detail in Figure 2.53b

where the spectra have been expanded by reanalyzing and replotting the data only up to 10 kHz

(instead of 100 kHz as shown in Figure 2.53a).

Data for Test 2 were repeated with the four tubes connecting the manifold and the test cell blocked.

This was to isolate any effects due to potential resonance of the tubes and the manifold and the

ducting located upstream. A comparison of Figures 2.54 (a) and 2.54 (b) shows that identical

spectra were obtained for the blocked and unblocked secondary air supply tubes. Existence of

resonance peaks at 3.6 Khz is quite clear in this case. Data for the unducted configuration were not

obtained in this case for identical location of the point source opening relative to the microphone,

but the data for other locations displayed no peaks at 3.6 Khz.

Data for Test 3 are shown in Figure 2.55. This time, the data for the smaller ejector are shown.

Resonance at a frequency around 4 kHz is obtained.

Finally similar resonances are noticed around 4kHz with Test 4 conducted with a small jet

exhaust located outside the test cell exit. These data are shown in Figure 2.56.

These tests, thus, further confirm that the high intensity tones measured in full-scale facility

at 85 Hz and 140 was in all likelihood a result of duct resonance.

The narrow band region at the very low frequencies between DC and 2 kHz appeared to

change with changing the ejector length. These results still need to be examined further.

2.8 Concluding Comments

The measurements reported in this section indicate that the noise spectra of the ducted

configuration is characterized by the dominance of a number of spectral peaks. The narrow band

spectral tones attributable to screech for the free jet are still noticed for the ducted configuration.

These frequencies remain roughly the same as for the free jet. Any changes in frequency observed

are attributable to minor differences in the jet Mach number for the ducted configuration since all
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measurements for a constant nominal Mach number were acquired at the same operating reservoir

pressure. It is found that, compared to the free jet, the levels of these discrete tones increase by as

much lOdB as measured by an in-duct microphone. This is to be expected, since the most of the

upstream propagating acoustic energy generated during the screech-related feedback process is

trapped in the test cell. This, in addition to the fact that the test-cell enclosure is reverberant,

accounts for the higher levels of screech type tones at the induct microphone locations. That these

narrow band tones are indeed related to feedback phenomena are discussed in great detail in the

next section.

In addition to the screech-type narrowband tones, tones with somewhat broader half

widths are also measured for the ducted configuration. These tones, falling in the range of 3 kHz

to just above 4 kHz, are attributable to some form of duct resonance. It is shown that the

frequencies of these tones do not change much on changing the flow conditions. Additional tests

performed by exciting the interior of the ducted configuration in the absence of any flow with

artificially generated sound further support the contention that the broader tones measured between

3-4 kHz are those due to duct resonances. Further confirmation of these findings is provided in

the next section based upon theoretical findings.
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SECTION 3

JET/DIFFUSER STABILITY CALCULATIONS

The purpose of the theoretical part of this investigation is to provide physical

interpretations and analysis of the findings of the companion experimental study described

in the last section on the aeroacoustics of jet/diffuser flow. Experimental measurements

indicate that the spectrum of the noise of the flow is dominated by tones and resonances.

Here tones are referred to the spectral peaks of very narrow half-widths. On the other

hand, spectral peaks with broader half-widths and not so well-defined peak frequencies are

referred to as resonances. It is our belief that the tones are jet screech tones generated by

feedback loops. These feedback loops are driven by the large-scale instability waves of the

jet flow. The resonances are associated with the normal acoustic modes of the jet/diffuser.

Because the flow is highly turbulent, the normal mode resonances are not sharp. In the

following, the normal acoustic modes of the flow system and the characteristics of the

instability waves of the supersonic jet are analyzed. The results are then used to explain

and to correlate experimental observations.

3.1 Supersonic Jet/Diffuser Flow Model and Analysis

The ejector flow is, needless to say, very complicated. Since it is not known

conclusively that the duct mode resonance is, indeed, responsible for the observed low

frequency tones a very detailed analysis is deemed unwarranted. It is believed that a

simple ejector jet flow model such as a vortex sheet supersonic jet housed inside a circular

duct may be a reasonable first analytical model. Such a model does contain the essential

physics crucial to the interaction between the oscillatory motion of the jet and the enclosing

duct. Furthermore, results of such a relatively simple model would provide valuable initial

estimates of the frequency or the wave number for refined calculations of the resonance

frequency when a more realistic model is used. To the authors knowledge, the acoustic

modes of a vortex sheet (top hat profile) supersonic jet inside a rigid circular duct have

not been analyzed before. Thus the results provided here are new.

Consider a supersonic jet bounded by a vortex sheet inside a rigid circular duct as

shown in Figure 3.1. The fully-expanded radius of the jet Rj, is related to the nozzle exit

radius, R, by the requirement of conservation of mass flux~ If M d is the nozzle design Mach

number (Md = 1.0 for a convergent nozzle) and M j is the fully-expanded Mach number of
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---
7 7 I I 7 7 7 7 7 7 I I I I I 7 I 7 171 I /1 } }

Figure 3.1 Ejector flow configuration
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the jet then Rj is given by

Let the time independent mean flow be p = p(r), u = u(r) and p =constant, where r

is the radial coordinate. The linearized equations of motion of an inviscid, compressible,

non-heat conducting flow in cylindrical coordinates are,

p(ov +u ov) = _ op
ot ox or

p(ow +u ow) = _~ op
at ox r of)

_(ou _ ou dU) op
P ot +u ox +v dr = - ox

op _ op _ ( 1 orv 1 ow OU )-+u-+'YP ---+--+- =0ot ox r or r of) ox

(1)

(2)

(3)

(4)

where (u, v, w) are velocity components in the (x, r, f)) directions. Let us look for duct

mode solutions of the form
p = p(r)ei(kx+nO-wt).

Upon eliminating all other variables in favor of p the governing equation is

(5)

d
2

j) + [~_~dP + 2k dU] + [P(W-Uk)2 _k2 _ n
2
]p=0.

dr2 r p dr (w - uk) dr 'Y p r2 (
6

)

For the case of a vortex sheet (or top hat profile) jet, (6) reduces to: r ~ Rj

d2p_ 1dp- [(W-U-k)2 2 n2]~
__J + __J + J -k -- p-=O
dr2 r dr a~ r 2 J

J

(7)

(8)d2Po 1 dpo [(W - Uok)2 2 n
2] ~--+--+ -k -- p =0dr2 r dr a~ r2 0

where subscript j or 0 indicates whether the variable is associated with a physical quantity

inside or outside the jet. aj and a o are the speeds of sound. The mean flow velocity outside

the jet is taken to be U o , which may be zero.

The dynamic and kinematic boundary conditions at the vortex sheet r = Rj are,

(9)
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1 dpj

Pj(w - ujk) dr
1 dpo

Po(w - uok) dr .
(10)

At the duct wall, r = Rj, the boundary condition is

dpo = 0
dr .

The solution of (7), which is finite at r = 0, is

(11)

(12)

where Aj = [(W-u j k)2 fa; _kp /2 and I n is the Besselfunction of order n. A is an arbitrary

constant. The branch cuts for Aj are taken so that -'Jr/2 < arg Aj ::; 'Jr /2. The solution of

(8) which satisfies boundary condition (11) is

(13)

where ¢ = [w2/a~ - 2Mowk/ao - (1 - M,;)k2P/2, 0 :::; arg¢ < 'Jr. Mo = uo/ao is the

Mach number of the mean flow outside the jet. Yn is the nth order Neumann function.

Substitution of (12) and (13) into (9) and (10) yields two homogeneous algebraic equations

for the two unknowns A and B. In order to have a non-trivial solution, the determinant of

the coefficient matrix must be equal to zero. This leads to the following dispersion relation

for wand k.

(14)

At ¢ = 0, the Neumann function becomes infinite. This occurs when k = ao(;~Mo)

and k = ao(l~Mo)'

Dispersion relation (14) provides an algebraic relationship between wave number

k and frequency w. There are two basic types of solutions. They are:

(a) Acoustic wave modes.

(b) Kelvin-Helmholtz instability waves.

The acoustic wave modes are solutions in which both k and ware real. The in.stability wave

solutions involve real k and complex w with imaginary w greater than zero for temporal

instability or real wand complex k for spatial instability. It is to be noted that for

comparisons with experiments spatial instability waves are more relevant.

88



AEDC-TR-91-20

Acoustic wave solutions of dispersion relation (14) can further be divided into

two classes with totally different characteristics. Those solutions, see Figure 3.2, which

are located in the sector of the w-k plane bounded by the lines w = kao(l + Mo) and

w = -kao(l - M o) including the w-axis are the diffuser duct modes. They are the regular

duct acoustic modes modified by the presence of the supersonic jet. Solutions to the left of

the line w = -kao(l - M o) are the upstream and downstream propagating acoustic wave

modes associated with the supersonic jet. These modes are found and their importance

recognized only recently (see ref. 3.1, 3.2 and 3.3). A rather remarkable characteristic

of these wave modes is that they are attached and guided by the jet. The portion of

the solution curve in the w-k plane with negative group velocity (ow 10k < 0) represents

upstream waves. These acoustic wave modes propagate upstream toward the nozzle exit

following the supersonic jet. One peculiar property of these upstream propagating wave

modes is that they are confined to specific frequency bands. The implication of the unusual

property of these modes will be discussed further later on.

3.2 Duct Acoustic Modes

The duct modes are given by the roots of (14), i.e., w = w(k). There are many duct

modes. They are usually classified by the azimuthal mode number n (n = 0,1,2,3, ... )

and a radial mode number m (m = 1,2,3, ... ). n = 0 corresponds to the axisymmetric

configuration. n = 1 corr~sponds to the helical or flapping (n = ±1) configuration. The

radial mode number indicates the number of nodes the eigenfunction has in the radial

direction.

Numerical solutions of (14) have been carried out at M o = a and Mj = 1.1, 1.2,

1.3, 1.4, 1.5 and 1.6 for a flow geometry identical to that of the companion experiments.

For each jet Mach number, the dispersion relation for n = 0,1,2 and m = 1,2,3 are

calculated. They are expressed in nondimension.al form W = W(k) where W = wR/uj

and k is nondimensionalized by R. The dispersion relations of these duct modes are shown

in Figures 3.3 to 3.20. An examination of these dispersion relations indicate that for a

given jet Mach number, the n = 1, m = 1 mode has the lowest frequency. It is, therefore,

the mode most likely to be excited. Since w is not a linear function of k, all the duct

mode waves are dispersive. As is well-known the energy of dispersive waves propagate

with group velocity ~~' Now if the group velocity of a wave is zero the energy of the wave

will not propagate away. Instead it will remain localized. In the case of the jet ejector flow,

these waves which are in a sense trapped inside the duct are prime candidates for inducing

resonance. We will call these waves resonance waves. Figure 3.21 shows the calculated
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0> =-k 110 (1 - Mo)

.,
/

0> = -k 110 (l + Mo)

,/

/'

/'

duct modes

~
,-~

/ /' ""
/ Upstream and 'downstream' '"

propagating acoustics wave '"
modes

~

/"
/

k

Figure 3.2 Locations of the duct modes and the upstream and downstream
propagating acoustic wave modes in the 0) -k plane
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resonance frequency of the n = 1, m = 1 duct mode as a function of jet Mach number

for the companion experiments. It turns out, for all intents and purposes, the calculated

resonance frequency is approximately equal to 3 KHz. The experimentally measured

resonance frequency (for the long ejector) varies from 3.4 KHz at Mach number 1.1 to

4.2 KHz at the higher Mach numbers. The agreement is not perfect but is quite close.

On considering the fact that a very simple mathematical model is used in the calculation

the agreement must be considered as very encouraging. The relatively close agreement

strongly supports the contention that the observed low frequency tone is probably due to

helical duct mode resonance.

The physical model described in Figure 3.1 assumes that the ejector is infinitely

long. For finite length ejector the normal acoustic modes must also satisfy the open end

boundary conditions. In this case, there is no continuous dispersion relation. Instead the

normal mode frequencies are discrete.

Consider an ejector of diameter D and length L as shown in Figure 3.22. It

will be assumed for simplicity that the open end boundary condition p = 0, where p is

the fluctuating pressure, is adequate. The solution of the Helmholtz equation (no mean

flow) with solid wall and open end boundary conditions gives the following normal mode

frequency formula

ftmn = [CT~m +(f%~) 2] 1/2 :~
n,f=0,1,2,3, .

m = 1,2,3, .

where

f = longitudinal mode number

n = azimuthal mode number

m = radial mode number

ao = ambient speed of sound

CTnm = roots of J~ (prime denotes derivative)

i.e., J~(CTnm) = 0, I n is the Bessel function of ordern.

For the companion experiments aO/(1rD) = 1.626 KHz. In the order of increasing
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Figure 3.22 A circular ejector of length L and diameter D
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frequency, the first five frequencies are:

LID = 1 LID = 3
JOll = 2.99 KHz JOll = 2.99 KHz
!Ill = 3.93 Jlll = 3.11
J02l = 4.97 1211 - 3.44-

!I2l = 5.58 J021 - 4.97-
1211 - 5.92 J12l = 5.04-

3.3 The Dominant Kelvin-Helmholtz Instability Wave

Dispersion relation (14) yields spatial instability wave (Kelvin-Helmholtz) solu

tions with real wand complex k(k = kT + ikd where ki < O. If Ro --t 00, the solutions

correspond to those of an unducted or free jet. It turns out for the ejector geometry of the

companion experiment, there is only weak coupling between the duct and the instability

waves of the jet. Thus it is sufficient to examine the instability wave characteristics of the

jet as if it is totally free.

The vortex sheet model jet which gives rise to dispersion relation (14) is a good

approximation of the jet flow only near the nozzle exit where the jet mixing layer is thin.

Due to entrainment, the jet spreads out in the downstream direction. Experimentally,

it is found that the mean velocity profile of the jet in the core region can be closely

approximated by a Gaussian function.

U {I, r < h
Uj = exp[-(fn2)(Thb)2, r>h

where h is the radius of the core of the jet and b is the half-width of the mixing layer. The

parameters hand b are related by the requirement of conservation of momentum flux:

where Pj, uj, and Rj are the fully expanded jet density, velocity and radius respectively.

The case of a vortex sheet model jet can be recovered by letting blRj --t O. It is also

found experimentally and justified by similarity arguments that b is a linear function of

the downstream distance x, i.e., dbldx = (J (constant), measured from the nozzle exit.

As an instability wave propagates downstream it sees a slowly changing mean flow.

As a result its spatial growth rate, -ki' varies in the downstream direction. Due to the
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spreading of the jet, the shear gradient which drives the instability wave decreases with

x, so that all instability waves regardless of frequency will eventually become neutral and

then damped. For circular jets, the instability waves can be decomposed azimuthally into

Fourier modes in the form of equation (5). The lowest order modes are the axisymmetric

(n = 0) and the helical or flapping modes (n = 1). Under a given jet operating condition,

generally, one of these wave modes is more dominant and most likely to be observed. The

dominance depends primarily on the jet Mach number and to a lesser degree on the jet to

ambient temperature ratio. ,The relative. dominance of these waves can be quantified by

determining the total spatial amplification of the waves.

The local spatial growth rate of an instability wave is given by -ki . In general,

-ki depends on S (the Strouhal number), n (the azimuthal mode number), Mj (the

Mach number of the jet) and b (the half-width of the mixing layer of the jet), i.e., ki =

ki(S, n, Mj, b). Suppose at a downstream location where the mixing layer has a half-width

be, the instability wave attains its maximum amplitude or ki(S, n, Mj, be) = O. Then the

total spatial amplification of the wave would be equal to,

be

exp [ - ~Jki(S, n, Mj, b)db]
bo

where (j is the spreading rate and bo is the initial half-width of the mixing layer. For a jet

with a given Mach number, the most amplified instability wave is the one having a Strouhal

number S and a mode number n which maximize the above integral. Numerical values of

the above integral for cold jets with Mach number 1.1 to 2.0 at 0.1 Mach number increment

have been computed. They are given in Figures 3.23 through 3.32 as functions of Strouhal

number. In each case the lowest three mode~, n = 0,1,2, are calculated. It is seen that,

at low supersonic Mach number (Mj < 1.2), the axisymmetric mode (n = 0) is slightly

more dominant. However, at higher Mach number, the helical mode (n = 1) clearly is

the most amplified and dominant. The switch in dominance from the axisymmetric to the

helical mode as jet Mach number increases is experimentally observable. Its implication

on the dynamics of the screech tone feedback loop of free or ducted supersonic jets will be

discussed in the next section.
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Figure 3.23 Total spatial growth rate of the instability waves of a Mach 1.1
supersonic jet as a function ofStrouhal number
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Figure 3.24 Total spatial growth rate of the instability waves of a Mach 1.2
supersonic jet as a function of Strouhal number
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Figure 3.25 Total spatial growth rate of the instability waves of a Mach 1.3
supersonic jet as a function of Strouhal number

116



AEDC-TR-91-20

I' , . ····a . I'

Ln
N

o

Mode
o 0
o 1
t:. 2

.
o

o

o

Lno
o

oo
o ..:.,1 ' ....:,' ......:,' I • •..' .......,; ·...:' iooI

o
.• N

Ln...-...x •
o

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
StrouhcL

Figure 3.26 Total spatial growth rate of the instability waves of a Mach 1.4
supersonic jet as a function of Strouhal number
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Figure 3.27 Total spatial growth rate of the instability waves of a Mach 1.5
supersonic jet as a function of Strollhal number

118



AEDC-TR-91-20

I'

0
N. .
0 -.

-0
-0

LI')...-..Y. •
0

~
0

~
I

0.
0

Mode
o 0
o 1
-~.

·8
o L.;. ' ' ' ' ' ..-. ' ' ' ' ......

0.0 0.1' 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
StrouhoL

Figure 3.28 Total spatial growth rate of the instability waves of a Mach 1.6
supersonic jet as a function of Strouhal number
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Figure 3.29 Total spatial growth rate of the instability waves of a Mach 1.7
supersonic jet as a function of Strouhal number
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Figure 3.30 Total spatial growth rate of the instability waves of a Mach 1.8
supersonic jet as a function of Strouhal number
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Figure 3.31 Total spatial growth rate of the instability waves of a Mach 1.9
supersonic jet as a function of Strouhal number
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3.4 Screech Tone Characteristics and Generation

Aside from the low frequency peak, which appears to correlate with the frequency

of the duct resonance mode, the noise spectrum of the jet-ejector or ducted flow is domi

nated by screech tones of almost discrete frequencies. In this section, an understanding of

the characteristics and generation mechanism of these tones is being sought. This is done

in two steps. First, an analysis of the screech tone frequency data is carried out. This

provides a general classification of the tones and an identification of some of their most

prominant characteristics. Second, an extension of the current theory on the generation

mechanism of these tones is proposed. The extended theory incorporates the concept of

dominant instability wave mode of Section 3.3 and the characteristics of the upstream

propagating acoustic wave modes briefly discussed in Section 3.1 into the feedback idea of

Powell ref. 3.4, Davies and Oldfield ref. 3.5, Tam, Seiner and Yu ref. 3.6 and others.

3.4.1 Analysis of Screech Tone Frequency Data

Screech tone frequency data of free supersonic jets were obtained in the companion

experiments. At a given jet Mach number, there are sometimes as many as three tones

(not harmonics of each other). These data are plotted in Figure 3.33 as Strouhal number

(JDj/uj) versus fully-expanded jet Mach number, Mj, where Dj is the fully-expanded

jet diameter (Dj = 2Rj). The tones were measured at a Mach number increment of 0.1.

They are not dense enough to provide a definitive pattern. In Figure 3.33, the data are

supplemented by those measured by Seiner & Norum ref. 3.7. It appears that there are

two basic families of tones. The tones at Mach number less than 1.2 form a family or

group. Their Strouhal numbers are higher. The tones at Mj > 1.2 apparently belong to

another family. The frequencies of the latter family are confined to two narrow almost

parallel bands. There appears to be no well- defined band structure in the first family of

tones.

The tone frequencies of the supersonic jet/diffuser flow are not the same as those

of a free supersonic jet at the same Mach number. In addition, the tone frequencies are

not the same if the long diffuser (L / D = 3.0) is replaced by the short diffuser (L / D = 1.0).

Figure 3.34 shows the combined tone frequency structure of the free supersonic jets and

the jet/diffuser flows. By simply comparing the tone frequencies with and without the

diffuser it is seen that no new tones are created in the second family of tones by enclosing

a screeching jet by a diffuser. The presence of the diffuser causes only a slight shift in

the tone frequency from one band to the other. With the addition of the tone frequencies

of the jet/diffuser flows to the free jet data the grouping of the tone frequencies into two
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families becomes even more prominent. The same is true with the double narrow band

formation of the second family of tones.

3.4.2 Correlation With Dominant Instability Wave Mode of Supersonic Jets

In Section 3.3, the concept and definition of the dominant instability wave of a

supersonic jet are provided and discussed. Extensive computation of the total growth rate

for the n = 0,1,2 instability wave modes of cold supersonic jets over the Mach number

range of 1.1 ~ Mj ~ 2.0 are given in Figures 3.23 to 3.32. Here the physical meaning of

these results in the Strouhal number versus jet Mach number plane is first explored. Its

relationship to the screech tone frequency pattern is then examined.

Figure 3.23 shows the total growth rate as functions of Strouhal number at Mj =

1.1. At this low supersonic Mach number the axisymmetric mode (n = 0) has a slightly

larger total amplification than the helical mode (n = 1). Both modes, however, have

much larger total amplification than the higher order modes (n = 2,3, ... ). Instability

waves with larger total amplification would attain a higher amplitude (assuming all waves

have similar initial amplitude). They are the dominant waves. Thus at low supersonic jet

Mach numbers, the axisymmetric instability wave mode is the most dominant. In Figure

3.23, the most dominant axisymmetric wave has a Strouhal number of 0.5. This is higher

than the Strouhal number of the most dominant helical or flapping mode instability wave

which has a Strouhal number of approximately 0.4. As the jet Mach number increases the

axisymmetric mode waves are no longer the most dominant instabilities. Figure 3.26 shows

the total growth rate at jet Mach number 1.4. Clearly now the helical (n = 1) instability

is most dominant. The dominant Strouhal number, however, has decreased to about 0.3.

Beyond Mj = 1.4 numerical results indicate that the dominance of the helical instability

waves persists all the way to high supersonic ~et Mach number.

Figure 3.35 gives a global view of the relative dominance of the axisymmetric and

helical instability waves in the Strouhal number versus jet Mach number plot. At low

supersonic jet Mach number, say Mj < 1.3, the dominant axisymmetric instability wave

Strouhal number is around 0.5. This is indicated by a full line in Figure 3.35. Beyond Mach

number 1.3, the total amplification of the axisymmetric mode is much smaller than that of

the helical mode SO that this mode is no longer very important. The cross-hatched areas

in Figure 3.35 indicate roughly the region in which the particular instability wave mode is

expected to be important and relatively dominant. The helical mode (n = 1) is dominant

at higher jet Mach number and at a lower Strouhal number. Its domain of dominance is

shown in Figure 3.35. Now if the tone frequency data of Figure 3.34 is superimposed on
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Figure 3.35 it is clear that the first family of tones is associated with the axisymmetric

(n = 0) instability waves. All the tone data points appear to fall in the region for which

the n = 0 instability wave mode is dominant. Similarly the second tone family is most

probably associated with the helical (n = 1) instability waves. The two frequency bands at

Mj > 1.2 in Figure 3.34 fit nicely into the region of dominance of the helical wave (n = 1)

in Figure 3.35. In short, the separation of the tone frequency data into two groups is a

direct consequence of the change in dominance of the axisymmetric and helical instability

waves of supersonic jets.

3.4.3 Screech Tone Generation Mechanism

The tones from the free as well as the ducted supersonic jets are believed to be

screech tones. Screech tones are known to be generated by a feedback loop (see refs. 3.4,

3.5 and 3.6). Figure 3.36 shows a schematic diagram of the feedback loop. Near the nozzle

exit, the shear layer of the jet is thin and is most receptive to external excitation. Acoustic

disturbances reaching this region could, therefore, excite the large-scale instability waves

of the jet. Once excited, the instability wave grows as it propagates downstream. After

propagating downstream for a distance of four to five shock cell spacings, the instability

wave, having grown in amplitude, interacts strongly with the shock cell structure generating

strong acoustic radiation. Part of the acoustic disturbances propagate upstream outside

the jet. On reaching the nozzle lip region, the acoustic disturbances excite the shear layer

creating new instability waves. In this way, the feedback loop is closed. Suppose L is

the distance between the nozzle exit and the location where the instability wave interacts

strongly with the shock cell structure to produce acoustic radiation. The time needed for

the instability wave to propagate from the nozzle lip to this location is equal to L/uc,

where u c , is the convective speed of the instability wave. The time taken by the acoustic

wave to reach the nozzle lip region outside thejet is equal to L/ao, where ao is the ambient

speed of sound. Since the feedback loop is closed, the total time taken around the loop

once must be equal to an integral multiple of the oscillation period. If f is the frequency,

the period of oscillation is 1/f. Thus

L L 1- + - =n-;
uc ao f

Hence

f = L(1 ::cc/ao) (17)

Equation (17) gives the feedback frequency in terms of the other parameters of the feedback

loop.
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Figure 3.36

·r_---==L:...-------l

Schematic diagram of the feedback loop responsible for generating

screech tones
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In (17) the integer n is not specified. Because of this a phenomenon called staging

often occurs. Let s be the shock cell spacing and m be such that L ~ ms. Figure 3.37 shows

two possible feedback configurations. The frequency formulas for these two configurations

are:
f = nuc

ms(l + uc/ao)
I

f' = n U
c •

m ' s(l +uc/ao)

The ratio of the two feedback frequencies is, therefore, given by

f n m '- = -- = constant.
f' m n'

(18)

(19)

(20)

Equation (20) implies that the feedback tone frequencies from the two feedback configura

tions would lie on parallel curves as observed in Figures 3.33 and 3.34. Here it is believed

that the two parallel band structure of the measured tone frequency curves is simply a

manifestation of the phenomenon of staging.

3.4.4 Feedback Acoustic Waves

The staging phenomenon discussed above offers an explanation to the band struc

ture of the screech tone frequencies. But there appears to be no reason for restricting the

number of bands to two as in the case of Figures 3.33 and 3.34. A possible reason for

limiting the number of bands to two will now be provided.

In a recent work by Tam & Hu (ref. 3.1), it was discovered that a supersonic jet

could support special acoustic wave modes which propagate upstream guided by the jet.

These wave modes can be calculated in the same way as the Kelvin-Helmholtz instability

waves. In a more recent article by Tam & Ahuja (ref. 3.2), it was suggested that these

acoustic wave modes were the feedback acoustic waves responsible for the generation of

jet impingement tones. Based on this suggestion they were able to explain several aspects

of seemingly puzzling phenomena associated with the impingement tones. Now it is also

possible that the acoustic feedback of the present screech phenomenon is accomplished

by these upstream propagating acoustic wave modes. If this is, indeed, the case then

the characteristics of the screech tones must be compatible with those of the upstream

propagating wave modes. One of the most prominent features of these wave modes is that

the wave frequency is restricted to well defined bands. If a vortex sheet jet model is used

these bands can be calculated by solving dispersion relation (14) . In the case of free

jets, (14) may be further simplified by letting Ro become infinitely large. As pointed out
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Schematic diagram showing the staging of a screeching jet
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before, the presence of the diffuser does not appear to create new screech tones and that

the measured tone frequencies with and without the diffuser all lie in the same two narrow

bands. For simplicity, therefore, the more simple model with Ro ---t 00 is used in all the

band frequency calculations in this report.

Figure 3.38 shows the calculated allowable Strouhal numbers of the axisymmetric

upstream propagating acoustic wave modes as functions of jet Mach number. These waves

are generally designated by two indexes (n, m). n (n = 0,1,2, ... ) is the azimuthal mode

number and m (m = 1,2,3, ...) is the radial mode number. On comparing the allow~ble

frequencies of the (0,1) and (0,2) upstream propagating acoustic wave modes of Figure

3.38 and the dominant frequencies of the axisymmetric instability waves of Figure 3.35 it is

clear that only the (0, 2) mode and the axisymmetric Kelvin-Helmholtz instability wave of

the jet can form a feedback loop. The frequencies of the (0,1) mode are too low to match

those of the instability waves. Figure 3.39 shows the allowable Strouhal numbers of the

helical upstream propagating acoustic wave modes. Since a feedback loop cannot be formed

unless all the different parts of the loop oscillate with the same frequency, it is evident by

comparing the range of the dominant helical instability wave frequencies of Figure 3.35

with those of the feedback acoustic wave modes of Figure 3.39 that only the (1, 1)· mode is

relevant. Figure 3.40 shows a comparison of the measured screech tone Strouhal number

(from Figure 3.34) with the allowable (0,2) and (1,1) upstream propagating acoustic wave

mode Strouhal numbers. As can be seen the measured tone data of the first family fall

within or close to the calculated band of allowable Strouhal numbers. This lends strong

support to the proposition that the feedback is achieved by the upstream acoustic wave

modes of the jet.

For the second family of tones, the data points all fall close to but below the

very narrow allowable Strouhal number band of the (1, 1) acoustic mode. The discrepancy

is believed to be due to the fact that a vor~ex sheet jet model is used to calculate the

allowable frequencies of the (1,1) mode. To explore this possibility the computation is

repeated using a more realistic jet model with a finite thickness mixing layer. The mean

velocity profile is given by equations (15) and (16).

According to the screech tone feedback model of Figure 3.36, the upstream propa

gating feedback acoustic waves are generated at a location approximately 4 to 5 shock cells

downstream. The half-width of the mixing layer at this location is around blRj ~ 0.8.

As the wave propagates upstream the half- width of the mixing layer as seen by the wave

decreases monotonically. This change in blRj leads to a change in the computed band of

allowable frequencies. Here it is proposed that the effective frequency band be regarded

as the aggregate of all the frequency bands with blRj ::; 0.8. It is to be noted that within
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this definition of the effective frequency band a wave may be slightly damped in part of

the region as it propagates upstream.

In the work of Tam & Hu, a procedure by which the allowable frequencies of the

upstream propagating acoustic wave modes of a jet with finite thickness mixing layer is

provided. Here the same computational procedure is used. Figure 3.41 shows the calculated

allowable (1,1) mode Strouhal numbers at blRj = 0.0, 0.5 and 0.8. As bjRj increases,

the Strouhal number decreases. Thus the effective band of the (1,1) mode frequencies is

bounded by those of blRj = aand blRj = 0.8. Plotted in this figure also are the measured

second family screech tone Strouhal numbers over the jet Mach number range of 1.2 to 1.7.

It is readily seen that all the data points now lie inside or on the aggregated frequency band.

The overall bandwidth is, however, still quite narrow. Accordingly, there would be no room

for a third data band (see Figure 3.34) although such a band is permissible according to the

staging phenomenon. Under the assumption that the screech tone feedback is accomplished

by the upstream propagating acoustic wave modes of the jet, the narrow band~idth of

these waves is the main reason for limiting the number of screech stages to two.
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SECTION 4

PLUME DEFLECTION SENSITIVITY TO SOUND

4.1 Objective

Physical deflections of 2-D, C-D nozzle flows have been observed at AEDC test facilities

concomitant with the presence of a strong discrete tone. It was speculated that this deflection could

have been produced by this discrete tone. The purpose of the present experiments was to

determine if this phenomenon could be reproduced in a model-scale facility and to assess the

sensitivity of a two-dimensional convergent-divergent nozzle to external acoustic excitation at scale

frequencies commensurate with those experienced in acoustic interactions at AEDC.

4.2 Test Nozzle

The final design of the two-dimensional convergent-divergent nozzle was based upon the

specifications and sketches provided by AEDC. The assembly drawing is shown in Figure 4.1.

The details are shown in Figures 4.2 through 4.4. The nozzle exit dimensions are 1.6 inches by

0.46 inches. The area ratio of the exit to the throat is 1.222. The exit area is 0.896 square inches.

The nozzle has a convergent-divergent cross-section only for the sides with the larger dimension.

The sides with the smaller ~ension are parallel. The nozzle is supplied by a 4-inch diameter duct

of the flow visualization facility of GTRI. Design of the transition from a round to a rectangular

cross-section within the constraints of nozzle wall angles imposed by AEDC was a major challenge

but was accomplished by suitable contouring of the inner surfaces as shown in Figures 4.1

through 4.4. A photographic view of the nozzle is given in Figure 4.5.

4.3 Acoustic Source

After appropriate scaling, the frequency for which the model scale jet was to be excited

turned out to be 1kHz for the jet operated at a fully-expanded Mach number of 1.4. The noise level

in the vicinity of the nozzle exit was to be about 160 dB.

A number of acoustic-driver configurations were tested to produce high intensity acoustic

excitation. After testing these configurations, the multi-tube source shown in Figure 4.6 was

selected as the acoustic source for this task. Since the testing was to be conducted at a single

frequency of 1000 Hz, the principle of duct resonance as a function of duct length was employed

to obtain very high sound pressure levels. The lengths of the tubes shown in Figure 4.6 were

selected corresponding to either 1/4 wave length or 3/4 wavelength, at which high intensity
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Figure 4.2 Two-dimensional convergent divergent nozzle details.
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Figure 4.6 High intensity noise source.
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resonance produced up to 163 decibels at 1000 Hz at about 1 inch from the exit of the center tube

of the source. Three views of this configuration mounted under the 2-D, C-D nozzle in the GTRI

Flow Visualization Facility are shown in Figure 4.7a-c.

4.4 Plume Sensitivity Experiment

The sound source described above was mounted on the optical table of GTRI Flow

Visualization Facility under the jet with the center of the noise source positioned about four inches

downstream of the nozzle exit. With this configuration, although the sound pressure levels at the

center of the source were about 163 dB, the sound pressure level measured at the nozzle exit was

153 dB. The data acquired consisted of schlieren and shadowgraphic flow visualizations of the jet

with and without the sound excitation. The results for a pressure ratio of 3.04 (Reservoir Pressure

=30 psig) and pressure ratios just above and just below 3.04 are shown in Figures 4.8 through

4.10 in schlieren pictures and in Figures 4.11 through 4.13 in shadowgraphic pictures.

Note that the source in these flow visualization pictures appears on the upper half of each

photograph. Our goal was to determine if sound could conceivably deflect the whole jet. As seen

in these photographs, it did not appear to do so. Examination of video pictures produced the same

conclusion. Similar conclusions were derived by placing a hard-walled plate across the jet in front

of the source opening and by varying the distance of the plate from the sound source.

It was concluded from tlns simple "demonstration" type sub-scale experiment that the 2-D,

C-D nozzle flow with a cut back section did not appear to respond to externally imposed sound.

We were trying to replicate a qualitative observation made in the full-scale facility by AEDC

personnel. No quantitative data were available. It is quite likely that the boundary layer at the

plume opening was quite different in the full-scale and the sub-scale nozzles. If so, the plume

sensitivity to acoustic excitation will be quite different also.

It is quite likely that in the full-scale setup, what was observed was the flapping mode of

the 2-D, nozzle and depending upon the lighting conditions, this flapping mode nlight have been

interpreted as a single-sided bodily deflection of the jet.

A closer exanlination of the schlieren pictures of the present sub-scale nozzle indicated that

at higher jet Mach numbers, the flapping of the jet could be visualized. Because of the presence of

the cut back section, the boundary layer of the jet at the lip of the longer sides is conceivably

thickened considerably. This is likely to reduce the growth rate of instability waves in the plume.

To confirm this conjecture, the cutback was closed off as shown in Figure 4.14 and schlieren

photographs of the unexcited jet were acquired.
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20 (-0 NOZZLE
UNEX(ITED
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20 (-0 NOZZLE
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PT- 300 P51g
M' 1 39
r.- 1000 Hz
l,' 153 7QB
R - 3- 9-90

Figure 4.8 Schlieren photograph of the 2-D, C-D jet: (al unexcited, (b) excited.
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Figure 4.9 Schlieren photograph of the 2-D, C-D jet: (a) unexcited, (b) excited.
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Figure 4.10 Schlieren photograph of the 2-D, C-D jet: (a) unexcited, (b) excited.
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Figure 4.11 Shadowgmph of the 2-D, C-D jet: (a) unexcited, (b) excited.
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Figure 4.12 Shadowgraph of the 2-D, C-D jet; (a) unexcited, (b) excited.
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Figure 4.13 Shadowgraph of the 2-D, C-D jet: (a) unexcited, (b) excited.
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Figure 4.14 The 2-D. C-D nozzle with the CuI back section closed off.
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It was found that this: indeed helped enhance the growth rate of the instability waves, and

much stronger flapping instabilities were self excited in the jet which is typical of 2-D supersonic

plumes. This is seen in comparison of jet instabilities at Mj = 1.49 with the cutback open and then

dosed as presented in Figure 4.15.

It is recommended that if recorded data from the AEDC full-scale test are available, a closer

e:xamination be made of the data in the light of the above observations. Is it likely that the lighting

conditions allowed visibility of the instability waves only on one side of the jet center line and

hence giving the impression that the jet was deflected only in one direction.

4.5 Additional Interestin~ Data

In an effort to determine if there were other conditions for the sub-scale configurations

where a bodily deflection of the jet with respect to its axis could be obtained, video pictures were

taken with the jet Mach number gradually increasing. It was found that at about a pressure ratio of

1.5 such a deflection was indeed observed. This resulted from separation taking place on one of

diverging walls. This separation appeared to switch randomly from one diverging wall to the other

thus producing a bulk change in deflection. This is best seen in a real time video recording; a

typical example is given in Figure 4.16. Figure 4.16a shows the plume development when the

separation appeared to take place at the top wall (of the photograph). Figure 4.16b shows the same

nozzle with the separation taking place on the lower wall. The only indication of anything being

different in the two photographs is that the light shading is different just upstream of the nozzle exit

and that the mixing layer on the lower side of Figure 4.16b is thicker than that in Figure 4.16a. In

a full-scale configuration, any deflection produced by this wall-separation phenomenon would

provide the impression of a large absolute deflection because of the larger distances involved.

It was found that when the cut-back section was closed off, the separation stabilized on one

wall of the nozzle. Also it was noticed that while testing the effect of closing off the cut-back,

there was a minor leak in the plate used for closing off the cut-back. On trying to stop the leak by

placing the hand over it, the jet mixing appeared to reduce (the plume width decreased) in

conjunction with a reduction in audible broadband noise. To explore it somewhat further, the plate

to close off was attached properly to have no air leak and a 1/4 inch diameter hole was drilled on

one of the plates used to close off the nozzle cut-back. The plate with the hole drilled in it is shown

in Figure 4.17. A video of the schlieren flow visualization was made of the plume mixing with the

hole closed or open. Typical results are shown in Figure 4.18. The jet could be modified

considerably by closing off the hole itself.
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Figure 4.17 Hole drilled in the plate used to close off nozzle cut back.
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No explanations are available for the observed phenomenon. Since detailed study of this

phenomenon was beyond the scope of the present effort, no quantitative measurements were made.

It is, however, recommended that further steps be taken to acquire detailed measurements to

understand the physics of flow from 2~D, C-D nozzles with and without cut-backs. It is also

recommended that the effects of nozzle wall boundary layer characteristics on the plume

development be studied.
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SECTION 5

OVERALL CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

5.1 Axisymmetric Jet Diffuser Flows

An experimental and theoretical investigation has been carried out to understand the

aeroacoustics of jet/diffuser flows. Experimental measurements indicate that the spectrum of the

noise of the flow is dominated by tones and resonances. Here tones refer to the spectral peaks of

very narrow half-widths. On the other hand, spectral peaks with broader half-widths and not so

well-defined peak:. frequencies are referred to as resonances. It is shown that the tones are the jet

screech tones generated by feedback loops. These feedback loops are driven by the large-scale

instability waves of the jet flow. The resonances are associated with the normal acoustic modes of

the jet/diffuser. Because of factors outlined below plus the fact that the flow is highly turbulent,

the normal mode resonances are not sharp.

To the authors' knowledge, this is the first analysis of the acoustic modes of a vortex sheet

(top hot profIle) supersonic jet inside a rigid circular duct.

Assuming a simple mathematical model, and assuming that the ejector is infinitely long,

resonance frequencies for a helical duct mode were determined as a function of jet Mach number.

The calculated frequency for the present sub-scale facility is approximately 3 kHz. The

experimentally measured resonance frequency for the long ejector varies from 3.4 kHz at Mach

number 1.1 to 4.2 kHz at the higher Mach numbers. The relatively close agreement strongly

supports the contention that the observed low frequency tone is due in part to excitation of the

helical duct mode resonance. The breadth and slight variation in this low frequency peak may be

the result of the excitation of additional duct modes in this frequency range whose presence was

confinned in Section 3.2 "Duct Acoustic Modes" and the rather large resolution bandwidth of 200

Hz between each consecutive frequency in the presented spectra. In addition, the low frequency

resonance measured in the sub-scale experiment appears to correlate quite well with the 85 Hz and

140 Hz tones observed in the full-scale facility when differences in scale and mean diffuser

temperature are taken into account. From measurements taken from the full-scale facility, the 85

and 140 Hz tones were originally suspected to be associated with duct resonance frequencies. The

present findings confmn that the full-scale phenomenon is mOSt likely associated with some form

of duct resonance and not due to a flow/acoustic interaction associated with classical jet screech.

Since the amplitudes of these excited sub-scale duct modes were substantially lower than those

observed in the full-scale configuration, the coupling mechanism which is presumed to have

existed in the full-scale facility is still unclear. Nonetheless, the knowledge that it is the duct
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resonance that is responsible for the low frequency tones is very helpful in deciding the course of

action that may be necessary to eliminate the resonance tone. Or for that matter, the resonance

frequency could perhaps be shifted to a more benign range by appropriately modifying the size of

the diffuser.

Aside from the low frequency peak which appears to correlate with the frequency of the

duct resonance mode, the noise spectrum of the jet-ejector or ducted flow is dominated by screech

tones of almost discrete frequencies. An understanding of the characteristics and generation

mechanism of these tones is also provided. This is done in two steps. First, an analysis of the

screech tone frequencies is carried out to provide a general classification of the tones and

identification of some of their most prominent characteristics. Second, the current theory on the

screech tone generation has been extended by incorporating the concept of dominant instability

mode developed in this report and the characteristics of the upstream propagating acoustic modes

into earlier classical concepts of feedback related to screech tones.

It is shown that the tones from the free as well as the ducted supersonic jets are the screech

tones. The presence of the diffuser does not appear to create new screech tones and that the

measured tone frequencies with and without the diffuser all lie in the same narrow bands.

It should be noted that although this initial stage of the investigation has produced some

very encouraging results, it is far from complete. Additional investigation is recommended. In

,Particular, it is recommended that the following tasks be carried out to understand the aeroacoustics

of ducted supersonic plumes as they relate to altitude test cells.

1. Using the sub-scale test facility, confirm the geometrical scaling of the resonance

frequency by obtaining further acoustic data for a circular, straight ejector of a diameter

different from that used in the present study. The theoretical calculation of resonance

were based upon the diameter of the ejector and frequency should change linearly with

ejector diameter.

2. Conduct detailed mode mapping inside the diffuser to identify diffuser modes

excited by the jet. This will require mounting ofpressure transducers flush with

the diffuser wall in an azimuthal configuration. A mode decomposition computer

code will have to be developed to accomplish this task.

3. Acquire additional screech noise data for Mach numbers that form the transition from

axisymmetric mode to the helical mode. Noise spectra should be acquired at LlM of less

than 0.1 in this region. This would provide precise Mach number demarcation line
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between the modes of instabilities.

4. Conduct a study for axisymmetric heated jets similar to that for the cold jets

reported here.

5. Study the conditions needed for a scale model to reproduce strong resonances

observed in full-scale facilities. Simple geometrical scaling may not be enough to

reproduce in scale model experiments the strong resonances observed in the full-scale

facilities.

6. Develop design charts for avoiding strong resonances in ·the jet engine test cell

environment. Development of a few simple-to-use charts by which jet-aeroacoustic

sensitive frequencies (liable to cause strong acoustic resonances) can be easily

estimated could be extremely beneficial to altitude test facility designers and operators.

7. Establish true scale simulation of full-scale hardware. For example, the constant

diameter circular diffuser should be replaced by a conical diffuser. This would

eliminate questions relative to geometric similarity on the nature of results.

8. In building any new hardware, adopt common scale for axisymmetric and 2-D

nozzles. This would allow economical testing of both axisymmetric and 2-D, C-D

nozzles in cell environment.

9. Continue developing theoretical models to provide insight, understanding, and

analysis of the experimental measurements. Theoretical analysis will have to be

extended to incorporate heated plumes and 2 dimensional nozzle geometries.

5.2 2-D. C-D Nozzle Flows

The purpose of this purely qualitative experimental study involving a 2-D, C-D nozzle (that

had a cutback section) was to assess the sensitivity of plumes from such a nozzle to acoustic

excitation at scale frequencies commensurate with those experienced in interactions in larger test

facilities at AEDC.

It was concluded fi:om this "limited-scope" study that the scaled frequency of 1000 Hz did

not excite the plume from this test nozzle. In fact, because of the presence of the cutback section,

the nozzle did not appear to display strong self-excited instability waves typical of 2-D nozzles

without cutbacks. On closing off the cut-back section, strong flapping mode instabilities could
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easily be seen in the flow. Likewise, strong screech frequencies were sensed by a far field

microphone which was used to freeze the motion of the instability waves at the screech frequency.

In the experiment on plume sensitivity to externally imposed sound, we were expecting to

observe some form of one sided bodily deflection of the plume as reported to have been observed

in the full-scale facilities at AEDC. In view of the lack of such observation in the present

experiments, it is recommended that if recorded data are available from the AEDC full-scale

facilities they be examined in somewhat detail to establish if the jet indeed deflected in one

direction.

It is quite likely that the flapping mode of the instability was excited in the full-scale facility,

but the lighting conditions were such that the portion of the instability wave only on one side of the

jet centerline could be seen. If the frequency of flapping was large enough, the observer might

indeed get an impression of one-sided deflection of the plume. Note that in this case it would be

difficult to precisely replicate the strength of any self-excited instability wave in the sub-scale

facility from that observed in the full-scale facility. This is because the 2-D, C-D nozzle in the case

of the full-scale facility was located inside the test cell, whereas that in the sub-scale facility was

basically a free jet. It is well known that the amplitude of the screech which is related to the self

excited instability wave amplitude (and the sound amplitude at the nozzle lip) is a strong function of

the surrounding that may help attenuate or enhance the sound energy reaching the nozzle lip. In

addition, the growth rate of the instability waves is a function of the boundary layer thickness at the

nozzle lip. Both of these factors could have contributed in not being able to precisely replicated the

phenomenon observed in the full-scale facility.

Finally, some interesting observations were made. It was noticed that for certain jet

operating conditions, separation occurred on one of the diverging walls of the nozzles. This

separation randomly moved from one wall to the other. This deflected the plume flow about the

nozzle axis in the manner of a fluidic jet. It was also found that when the cut back section was

closed off, this separation still took place but now became stabilized on only one wall.

In another observation, it was observed that if a small hole was drilled in the section and to

close off the cut back section, it modified the plume mixing and the associated jet mixing noise

considerably. No quantitative data were acquired.

It is recommended that a detailed study be carried out to understand both the fluid dynamics

and the aeroacoustics of 2-D, C-D nozzles. Part of this study should include 2-D, C-D nozzle wall

surface pressure measurements to establish nozzle internal performance during oscillatory

behavior. The walls of the nozzle wall should be made out of a transparent material to obtain
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insight into the origin of the unsteadiness via schlieren photography. Finally, as already alluded to

above, effect of temperature should be studied both with and without the cell.
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APPENDIX I

As pointed out earlier, all of the data presented in the report for a given nominal fully

expanded jet Mach number was acquired at a constant ratio of the plenum chamber pressure to the

ambient pressure. In later measurements, it was found that because of the pumping action of the

diffuser, the back pressure, downstream of the nozzle exit, was actually somewhat lower for the

larger ejector than the ambient pressure. The differences in the ambient pressure and the back

pressure or the test cell static pressure for the smaller ejector were insignificant. For the sake of

completeness, the back pressures for both ejectors were measured as a function of the ratios of

plenum pressure and ambient pressure. A relative comparison of the actual pressure ratio

(PplenumIPtest cell) and assumed pressure ratio (Pplenum/Pambient) for the two ejectors is

provided in Figure A 1. The slope of the curve for the smaller ejector is 1.0403 while that for the

larger ejector is 1.207. A comparison of assumed fully-expanded jet Mach numbers with actual

Mach numbers calculated after accounting for the reduced back pressures is given in Table 1.1.

Table 1.1 A comparison of the assumed fully-expanded Mach
numbers with the actual Mach numbers for the two ejectors.

Assumed Actual Actual
M· M· M·

J J J
(Lej/Dej = 1) (Le/Dej= 3)

0.80 0.80 0.81

1.00 1.00 1.02

1.10 1.10 1.12

1.20 1.20 1.23

1.30 1.31 1.34

1.40 1.41 1.45

1.50 1.51 1.57

1.60 1.62 1.68

1.70 1.72 1.79
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pres,ented. It is shown that a 2-D, CoD nozzle with a cutback is less excitable than a 2-D nozzle with no cutback.
At a pressure ratio of 1,,5, unsteady separation from the diverging walls of the nozzle is noticed. This separation
switches from one wall to the opposite wall thus providing an unsteady deflection of the plume. It is shown
that this phenomenon is related to the venti ng provided by the cutback section.
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