13,261 research outputs found

    The Conductance of a Perfect Thin Film with Diffuse Surface Scattering

    Full text link
    The conductance of thin films with diffusive surface scattering was solved semi-classically by Fuchs and Sondheimer. However, when the intrinsic electron mean free path is very large or infinite their conductance diverges. In this letter a simple diffraction picture is presented. It yields a conductance which corresponds to a limiting mean free path. PACS: 73.50.-h, 73.50.Bk, 73.23.-b, 73.25.+i, B14

    Reproductive and developmental effects of phthalate diesters in females.

    Get PDF
    Phthalate diesters, widely used in flexible plastics and consumer products, have become prevalent contaminants in the environment. Human exposure is ubiquitous and higher phthalate metabolite concentrations documented in patients using medications with phthalate-containing slow release capsules raises concerns for potential health effects. Furthermore, animal studies suggest that phthalate exposure can modulate circulating hormone concentrations and thus may be able to adversely affect reproductive physiology and the development of estrogen sensitive target tissues. Therefore, we conducted a systematic review of the epidemiological and experimental animal literature examining the relationship between phthalate exposure and adverse female reproductive health outcomes. The epidemiological literature is sparse for most outcomes studied and plagued by small sample size, methodological weaknesses, and thus fails to support a conclusion of an adverse effect of phthalate exposure. Despite a paucity of experimental animal studies for several phthalates, we conclude that there is sufficient evidence to suggest that phthalates are reproductive toxicants. However, we note that the concentrations needed to induce adverse health effects are high compared to the concentrations measured in contemporary human biomonitoring studies. We propose that the current patchwork of studies, potential for additive effects and evidence of adverse effects of phthalate exposure in subsequent generations and at lower concentrations than in the parental generation support the need for further study

    Origin of positive magnetoresistance in small-amplitude unidirectional lateral superlattices

    Full text link
    We report quantitative analysis of positive magnetoresistance (PMR) for unidirectional-lateral-superlattice samples with relatively small periods (a=92-184 nm) and modulation amplitudes (V_0=0.015-0.25 meV). By comparing observed PMR's with ones calculated using experimentally obtained mobilities, quantum mobilities, and V_0's, it is shown that contribution from streaming orbits (SO) accounts for only small fraction of the total PMR. For small V_0, the limiting magnetic field B_e of SO can be identified as an inflection point of the magnetoresistance trace. The major part of PMR is ascribed to drift velocity arising from incompleted cyclotron orbits obstructed by scatterings.Comment: 12 pages, 9 figures, REVTe

    C^+ distribution around S1 in rho Ophiuchi

    Full text link
    We analyze a [C II] 158 micron map obtained with the L2 GREAT receiver on SOFIA of the emission/reflection nebula illuminated by the early B star S1 in the rho-OphA cloud core. This data set has been complemented with maps of CO(3-2), 13CO(3-2) and C18O(3-2), observed as a part of the JCMT Gould Belt Survey, with archival HCO^+(4-3) JCMT data, as well as with [O I] 63 and 145 micron imaging with Herschel/PACS. The [C II] emission is completely dominated by the strong PDR emission from the nebula surrounding S1 expanding into the dense Oph A molecular cloud west and south of S1. The [C II] emission is significantly blue shifted relative to the CO spectra and also relative to the systemic velocity, particularly in the northwestern part of the nebula. The [C II] lines are broader towards the center of the S1 nebula and narrower towards the PDR shell. The [C II] lines are strongly self-absorbed over an extended region in the S1 PDR. Based on the strength of the [13C II] F = 2-1 hyperfine component, [C II] is significantly optically thick over most of the nebula. CO and 13CO(3-2) spectra are strongly self-absorbed, while C18O(3-2) is single peaked and centered in the middle of the self-absorption. We have used a simple two-layer LTE model to characterize the background and foreground cloud contributing to the [C II] emission. From this analysis we estimate the extinction due to the foreground cloud to be ~9.9 mag, which is slightly less than the reddening estimated towards S1. Since some of the hot gas in the PDR is not traced by low J CO emission, this result appears quite plausible. Using a plane parallel PDR model with the observed [OI(145)]/[C II] brightness ratio and an estimated FUV intensity of 3100-5000 G0 suggests that the density of the [C II] emitting gas is ~3-4x10^3 cm^-3.Comment: Accepted for publication in Astronomy & Astrophysic

    Regression analysis under incomplete linkage

    Get PDF
    Most probability-based methods used to link records from two distinct data sets correspond- ing to the same target population do not lead to perfect linkage, i.e. there are linkage errors in the merged data. Chambers (2008) describes modi¯cations to standard methods of regression analysis that can be used with such imperfectly linked data. However, these methods assume that the linkage process is complete, i.e. all records on the two data sets are linked. This paper extends these ideas to regression analysis using data that have been incompletely linked, and in particular to the situation where one of the data sets being linked is a sample from the target population and the other is a register, i.e. it covers the entire target population

    Opening the Treasure Chest in Carina

    Full text link
    We have mapped the G287.84-0.82 cometary globule (with the Treasure Chest cluster embedded in it) in the South Pillars region of Carina (i) in [CII], 63micron [OI], and CO(11-10) using upGREAT on SOFIA and (ii) in J=2-1 transitions of CO, 13CO, C18O and J=3-2 transitions of H2CO using the APEX telescope in Chile. We probe the morphology, kinematics, and physical conditions of the molecular gas and the photon dominated regions (PDRs) in G287.84-0.82. The [CII] and [OI] emission suggest that the overall structure of the pillar (with red-shifted photo evaporating tails) is consistent with the effect of FUV radiation and winds from eta-Car and O stars in Trumpler 16. The gas in the head of the pillar is strongly influenced by the embedded cluster, whose brightest member is an O9.5V star, CPD-59 2661. The emission of the [CII] and [OI] lines peak at a position close to the embedded star, while all other tracers peak at another position lying to the north-east consistent with gas being compressed by the expanding PDR created by the embedded cluster. The molecular gas inside the globule is probed with the J=2-1 transitions of CO and isotopologues as well as H2CO, and analyzed using a non-LTE model (escape-probability approach), while we use PDR models to derive the physical conditions of the PDR. We identify at least two PDR gas components; the diffuse part (~10^4 cm^-3) is traced by [CII], while the dense (n~ 2-8x10^5 cm^-3) part is traced by [CII], [OI], CO(11-10). Using the F=2-1 transition of [13CII] detected at 50 positions in the region, we derive optical depths (0.9-5), excitation temperatures of [CII] (80-255 K), and N(C+) of 0.3-1x10^19 cm^-2. The total mass of the globule is ~1000 Msun, about half of which is traced by [CII]. The dense PDR gas has a thermal pressure of 10^7-10^8 K cm^-3, which is similar to the values observed in other regions.Comment: Accepted for publication in Astronomy and Astrophysics (abstract slightly abridged

    Surface effects on nanowire transport: numerical investigation using the Boltzmann equation

    Full text link
    A direct numerical solution of the steady-state Boltzmann equation in a cylindrical geometry is reported. Finite-size effects are investigated in large semiconducting nanowires using the relaxation-time approximation. A nanowire is modelled as a combination of an interior with local transport parameters identical to those in the bulk, and a finite surface region across whose width the carrier density decays radially to zero. The roughness of the surface is incorporated by using lower relaxation-times there than in the interior. An argument supported by our numerical results challenges a commonly used zero-width parametrization of the surface layer. In the non-degenerate limit, appropriate for moderately doped semiconductors, a finite surface width model does produce a positive longitudinal magneto-conductance, in agreement with existing theory. However, the effect is seen to be quite small (a few per cent) for realistic values of the wire parameters even at the highest practical magnetic fields. Physical insights emerging from the results are discussed.Comment: 15 pages, 7 figure

    Active colloidal particles in emulsion droplets: A model system for the cytoplasm

    Full text link
    In living cells, molecular motors create activity that enhances the diffusion of particles throughout the cytoplasm, and not just ones attached to the motors. We demonstrate initial steps toward creating artificial cells that mimic this phenomenon. Our system consists of active, Pt-coated Janus particles and passive tracers confined to emulsion droplets. We track the motion of both the active particles and passive tracers in a hydrogen peroxide solution, which serves as the fuel to drive the motion. We first show that correcting for bulk translational and rotational motion of the droplets induced by bubble formation is necessary to accurately track the particles. After drift correction, we find that the active particles show enhanced diffusion in the interior of the droplets and are not captured by the droplet interface. At the particle and hydrogen peroxide concentrations we use, we observe little coupling between the active and passive particles. We discuss the possible reasons for lack of coupling and describe ways to improve the system to more effectively mimic cytoplasmic activity

    The Penrose Effect and its acceleration by the war on drugs: a crisis of untranslated neuroscience and untreated addiction and mental illness

    Get PDF
    In 1939, British psychiatrist Lionel Penrose described an inverse relationship between mental health treatment infrastructure and criminal incarcerations. This relationship, later termed the ‘Penrose Effect’, has proven remarkably predictive of modern trends which have manifested as reciprocal components, referred to as ‘deinstitutionalization’ and ‘mass incarceration’. In this review, we consider how a third dynamic—the criminalization of addiction via the ‘War on Drugs’, although unanticipated by Penrose, has likely amplified the Penrose Effect over the last 30 years, with devastating social, economic, and healthcare consequences. We discuss how synergy been the Penrose Effect and the War on Drugs has been mediated by, and reflects, a fundamental neurobiological connection between the brain diseases of mental illness and addiction. This neuroscience of dual diagnosis, also not anticipated by Penrose, is still not being adequately translated into improving clinical training, practice, or research, to treat patients across the mental illness-addictions comorbidity spectrum. This failure in translation, and the ongoing fragmentation and collapse of behavioral healthcare, has worsened the epidemic of untreated mental illness and addictions, while driving unsustainable government investment into mass incarceration and high-cost medical care that profits too exclusively on injuries and multi-organ diseases resulting from untreated addictions. Reversing the fragmentation and decline of behavioral healthcare with decisive action to co-integrate mental health and addiction training, care, and research—may be key to ending criminalization of mental illness and addiction, and refocusing the healthcare system on keeping the population healthy at the lowest possible cost.
    • …
    corecore