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Regression analysis under incomplete linkage

Gunky Kim and Raymond Chambers

Centre for Statistical and Survey Methodology
University of Wollongong

Summary

Most probability-based methods used to link records from two distinct data sets correspond-

ing to the same target population do not lead to perfect linkage, i.e. there are linkage

errors in the merged data. Chambers (2008) describes modifications to standard methods

of regression analysis that can be used with such imperfectly linked data. However, these

methods assume that the linkage process is complete, i.e. all records on the two data sets

are linked. This paper extends these ideas to regression analysis using data that have been

incompletely linked, and in particular to the situation where one of the data sets being linked

is a sample from the target population and the other is a register, i.e. it covers the entire

target population.

Key words: Record matching; linkage errors; linear regression; logistic regression; estimating

equations; measurement error.

1 Introduction

Methods for probabilistically linking data relating to the same target population, but stored

on different data bases, have been extensively developed over the last three decades. In

particular, there are now a number of software packages for computerized record linkage that

can deal with the large data sets that arise in practical applications, e.g. census data (Jaro
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(1989)) and population health data (Newcombe (1988)). Since a linked data file allows much

more powerful analysis than the individual contributing data sets, data linkage has become

an important research tool in areas such as health, business, economics and sociology, where

there can be a considerable increase in the capacity for more efficient and more cost effective

analysis using the information in a linked database compared with the separate component

databases. To illustrate, the Census Data Enhancement project of the Australian Bureau

of Statistics aims to develop a Statistical Longitudinal Census Dataset by linking data from

the same individuals over a number of censuses. It is expected that this linked data set will

provide a powerful tool for future research into the longitudinal dynamics of the Australian

population.

Following the pioneering work of Fellegi and Sunter (1969), probabilistic matching has be-

come a major tool in data linkage. In this case, the aim is to optimize the linkage process by

minimizing the number of linked records that correspond to potentially incorrect linkages.

However, it is important to note that minimizing the incidence of linkage errors does not in

itself imply that there are no incorrectly linked records in the linked data set.

Neter et al. (1965) show that even a small amount of mismatching can result in significant

response error. Scheuren and Winkler (1993), Scheuren and Winkler (1997) and Lahiri and

Larsen (2005) have investigated methods for correcting the bias induced by this error in

the context of linear regression analysis. Chambers (2008) extends this work to the general

regression case and develops new methods to bias-correct estimated regression parameters

when linkage is complete, i.e. when there are no records that are not (at least potentially)

linked. However, the reality is that there are many situations where not all the records in the

contributing data bases can be linked. For example, it is often the case that one contributing

data base corresponds to a sample, while the other covers the entire population of interest,

i.e. is a register. Furthermore, even in such cases typically not all sample records can be

linked to the register. In this situation, direct application of the methods in Chambers

(2008) is inappropriate. Our main contribution in this article is to extend the approach of

Chambers (2008) to accommodate this situation.
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1.1 Backgrounds and Assumptions

Suppose that there exist two distinct data sets y and X where each value of y depends

on a value of X via a known functional form. In particular, we are interested in fitting a

regression model of the form E(y|X) = g(X; θ), where g is known but the parameter θ is

unknown. Estimation of θ is straightforward when correctly linked values of y and X are

available. However, due to linkage errors, the values of y are not all observable. Instead,

one can observe y∗, the values that are linked to the values of X. If there are no linkage

errors, then y∗ will be the same as y, but if there are errors, then y∗ won’t be the same as y.

Estimating θ by substituting y∗ for y can therefore lead to bias. Chambers (2008) suggests

a number of different methods to correct this bias when g corresponds to either linear or

logistic regression under the assumption that all records are linked and linkage is one to

one between y and X. This reference also considers the situation where X corresponds

to a sample, whereas y covers the entire population of interest. That is, X is incomplete

but all records from X are linked with records in y. In this paper, we extend this idea to

accommodate the situation where some of the records in y and X cannot be linked.

The notation and assumptions used in the rest of this paper are set out below:

1. The total number of units in the population of interest, and hence the number of

records making up both y and X, is N . However, we only observe a sample s of n

records from X. Furthermore the method of sampling is non-informative given X so

that the population relationship E(y|X) = g(X; θ) also holds for the correctly linked

sampled records from X. Here g is arbitrary, but the linear and logistic specifications

are of particular interest.

2. Let Xs denote the n sampled records from X, noting that not all of these records can

be linked to records in y.

3. The records making up X can be partitioned into Q distinct and non-overlapping

blocks1.We refer to these as “m-blocks” in what follows, and note that linkage errors

only occur within m-blocks, in the sense that records in distinct m-blocks can never

be linked. The records from X that make up the qth m-block is denoted Xq.

1See Chambers (2008) for a more detailed discussion concerning the concept of a block. Essentially blocks
serve to post-stratify the linkage errors
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4. The random variables corresponding to whether records in Xs can be linked or not

and the random variables defining whether records in X are sampled are mutually

independent. As a consequence, the regression model that holds for the correctly

linked sample records also holds for the non-linked records.

Much of the notation in what follows can be found in Chambers (2008), and so is used without

further explanation. Modifications to this notation that are necessary for the extension of

the theory set out in that reference are also kept as intuitive as possible.

Assuming that there are Q different m-blocks, one then has N =
∑Q

q=1 Mq, where Mq is the

number of records making up Xq. By construction, a record from Xq can only be matched

to a record in the corresponding m-block yq of y. If we assume that all the records in the

qth m-block are linked, then, following Chambers (2008), we can model the outcome of the

linkage process by the equation

y∗q = Aqyq (1)

where Aq is an unknown random permutation matrix of order Mq. Further, we can then

define

E(Aq|Xq) = Eq. (2)

When some records are not linked, Aq is no longer a permutation matrix. Let Xsq be the

set of sampled records in Xq. Then Xsq can be divided into two groups, defined by Xslq

which is the set of sampled records in Xq that are linked to y∗q, and Xsuq which is the set of

sampled records in Xq that are not linked to y∗q. Further, let Xrq := Xq −Xsq denote the

set of non-sampled records in Xq. Then this also can be partitioned into Xrlq and Xruq,

the set of non-sampled records that can be linked to y∗q and the set of non-sampled records

that cannot be linked to y∗q respectively. Under the one to one linkage assumption, y∗q can

therefore also be theoretically divided into four groups, namely y∗slq, y∗suq, y∗rlq and y∗ruq.

Thus, (1) can be modified to allow non-linkage of sampled records by writing

y∗q =




y∗slq
y∗suq

y∗rlq

y∗ruq


 =




Aslsl,q Aslsu,q Aslrl,q Aslru,q

Asusl,q Asusu,q Asurl,q Asuru,q

Arlsl,q Arlsu,q Arlrl,q Arlru,q

Arusl,q Arusu,q Arurl,q Aruru,q







yslq

ysuq

yrlq

yruq


 = Aqyq. (3)
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Similarly, (2) can be modified as

E(Aq|Xq) = Eq =




Eslsl,q Eslsu,q Eslrl,q Eslru,q

Esusl,q Esusu,q Esurl,q Esuru,q

Erlsl,q Erlsu,q Erlrl,q Erlru,q

Erusl,q Erusu,q Erurl,q Eruru,q


 . (4)

2 The adjusted estimating function approach

In the previous section, we showed how we can partition yq, y∗q and the permutation matrix

Aq according to the partition of Xq defined by Xslq, Xsuq, Xrlq and Xruq. These partitions

play an important role in estimation of θ when some records in Xsq cannot be linked to any

records in yq, which is the main theme of this section.

In what follows, we modify the adjusted estimating function approach used in Chambers

(2008) to accommodate non-linked sample records. First, however, we briefly consider the

case of complete and one to one linkage in order to introduce notation and ideas from

Chambers (2008) that are necessary for our development. We then explain how we modify

this approach to accommodate non-linked sample data.

2.1 The estimating function approach under one to one complete

linkage

A more detailed explanation of the development this subsection can be found in Chambers

(2008). Given that E(y|X) = g(X; θ), we assume that the θ can be estimated by solving

H(θ) = 0,

where H(θ) is an unbiased estimating function. That is, it satisfies EX

[
H(θ0)

]
= 0 when

θ0 is the true value of θ. Let ∂θ be the partial differentiation operator with respect to θ.

Suppose that θ̂ satisfies H(θ̂) = 0. Then, under regularity conditions that ensure sufficient

smoothness for valid Taylor expansion,

0 = H(θ̂) ≈ H(θ0) + (θ̂ − θ0)∂θH(θ0).
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If H(θ) is an unbiased estimating function and ∂θH(θ0) is non-singular, then one has

asymptotic unbiasedness since

EX

[
θ̂ − θ0

] ≈ −[
∂θH(θ0)

]−1
EX

[
H(θ0)

]
= 0.

Note that the corresponding asymptotic variance of θ̂ is given by

VarX(θ̂) ≈ [
∂θH(θ0)

]−1
VarX

[
H(θ0)

]([
∂θH(θ0)

]−1
)T

. (5)

In Chambers (2008), the estimating function is assumed to be of the form

H(θ) =
∑

q

Gq(θ)
{
yq − f q

}
, (6)

where f q = EX(yq) and Gq(θ) is a function of θ and Xq but not of yq. However, since yq

is not observable, a naive estimator θ̂
∗

of θ0 can be defined by solving the equation

H∗(θ̂
∗
) =

∑
q

Gq(θ̂
∗
)
{
y∗q − f q(θ̂

∗
)
}

= 0. (7)

This naive estimator assumes no linkage errors. Hence, in general,

EX

[
H∗(θ0)

]
=

∑
q

Gq(θ0)
{(

Eq − Iq

)
f q(θ0)

} 6= 0. (8)

An unbiased version of this estimating function is

H∗
adj(θ̂

∗
) = H∗(θ)−

∑
q

Gq(θ)
{(

Eq − Iq

)
f q(θ)

}
=

∑
q

Gq(θ)
{
y∗q − Eqf q(θ)

}
. (9)

The bias-adjusted estimator θ̂
∗
adj for θ is defined as the solution of

H∗
adj(θ̂

∗
adj) = 0.

The asymptotic variance of θ̂
∗
adj is then of the form

VarX(θ̂
∗
adj) ≈

[
∂θH

∗
adj(θ0)

]−1
VarX

[
H∗

adj(θ0)
]([

∂θH
∗
adj(θ0)

]−1
)T

. (10)

This estimating function approach is effective and easy to implement. Also, by using different

functions for Gq, one can define a variety of different estimators. For example, using the

standard ’hat’ notation to indicate an estimate, we can define (see Chambers (2008) for a

more detailed development):
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1. The Naive estimator: Gq = XT
q .

2. The Lahiri and Larsen estimator: Gq = XT
q ÊT

q .

3. The EBLUE (empirical best linear unbiased estimator): Gq = XT
q ÊT

q (σ̂2Iq + V̂q)
−1.

Here σ2 = VarX(y) and Vq = VarX(EX [Aqyq|Aq]).

However, this estimating function approach is based on the assumption that the populations

underlying X and y are the same and that linkage is one to one and complete, so that A

is a permutation matrix. When some of the records in X cannot be linked to y, then A

is no longer a permutation matrix. The next subsection therefore extends the adjustment

approach described in this subsection to accommodate the incomplete linkage case, using

the partitions defined in the previous section.

2.2 The estimating function approach with incompletely linked

sample records

The aim of this subsection is to extend the estimating function approach described in Cham-

bers (2008) to accommodate incomplete linkage of sample records.

An immediate consequence of the incomplete linkage of sampled records is that instead of

observing y∗q, we observe y∗slq. If the size of y∗slq is small, the estimating function approach

can be ineffective. Two possible reasons for this are

1. small sample bias, or

2. the distribution of y∗slq may be different from that of ysq.

We will investigate both these cases using simulation in the next section where we examine

the efficiency of the adjusted estimating function approach developed below. For the time

being, however, we assume that the size of y∗slq is not small. Furthermore, in this subsection

we assume that the distribution of y∗slq given Xsq is the same as that of ysq given Xsq (i.e.

we have non-informative incomplete linkage). We consider a situation where this assumption

can be relaxed later in this section.

Since we only observe y∗slq, a modified version of the estimating function that ignores the

linkage errors is of the form

H∗
sl(θ) =

∑
q

Gslq(θ)
{
y∗slq − f slq(θ)

}
, (11)
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where

y∗slq = Asqyq

and

Asq =
(
Aslsl,q Aslsu,q Aslrl,q Aslru,q

)
.

A similar partition exists for the expected value of this matrix,

Esq = EX

[
Asq

]
=

(
Eslsl,q Eslsu,q Eslrl,q Eslru,q

)
.

Correcting for the bias caused by linkage errors then leads us to an estimating function of

the form

H∗
adj,sl(θ) = H∗

sl(θ)− EX

[
H∗

sl(θ)
]

=
∑

q

Gslq(θ)
{
y∗slq − EX

[
y∗slq

]}

=
∑

q

Gslq(θ)
{
y∗slq − Esqf q(θ)

}

=
∑

q

Gslq(θ)
{
y∗slq − Eslsl,qf slq(θ)

}

−
∑

q

Gslq(θ)
{
Eslsu,qf suq(θ) + Eslrl,qf rlq(θ) + Eslru,qf ruq(θ)

}
.

(12)

In order to proceed further we need to specify the distribution of the linkage errors. We

adapt the exchangeable linkage error model defined in Chambers (2008). That is, for the qth

m-block we assume that

Pr(correct linkage) = Pr(aq
ii = 1) = λq, (13)

and, for i 6= j,

Pr(incorrect linkage) = Pr(aq
ij = 1) = γq. (14)

It follows that

Eq = (λq − γq)Iq + γq1q1
T
q , (15)

where

λq + (Mq − 1)γq = 1. (16)
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Under the exchangeable linkage error model, one can therefore write

Eslsl,q =
[λqMq − 1

Mq − 1

]
Islq +

[ 1− λq

Mq − 1

]
1slq1

T
slq,

Eslsu,q =
[ 1− λq

Mq − 1

]
1slq1

T
suq,

Eslrl,q =
[ 1− λq

Mq − 1

]
1slq1

T
rlq,

Eslru,q =
[ 1− λq

Mq − 1

]
1slq1

T
ruq

(17)

and so
∑

q

Gslq(θ)
{
Eslsu,qf suq(θ) + Eslrl,qf rlq(θ) + Eslru,qf ruq(θ)

}

=
∑

q

( 1− λq

Mq − 1

)
Gslq(θ)1slq

[
1T

suqf suq(θ) + 1T
rlqf rlq(θ) + 1T

ruqf ruq(θ)
]

=
∑

q

( 1− λq

Mq − 1

)
Gslq(θ)1slq

[
1T

q f q(θ)− 1T
slqf slq(θ)

]
.

Since the distribution of yslq is assumed to be the same as that of ysq and sampling is non-

informative, the unknown population sum 1T
q f q(θ) can be approximated by the weighted

sample sum wT
slqf slq(θ)

2. Using (12), we then define a modified estimating function that

allows for incomplete linkage of the form

Hadj
wsl(θ) =

∑
q

Gslq(θ)
{
y∗slq − Eslsl,qf slq(θ)

}

−
∑

q

( 1− λq

Mq − 1

)
Gslq(θ)1slq

[
wT

slqf slq(θ)− 1T
slqf slq(θ)

]

=
∑

q

Gslq(θ)
{
y∗slq − Ẽslsl,qf slq(θ)

}
,

(18)

where

Ẽslsl,q =
[λqMq − 1

Mq − 1

]
Islq +

[ 1− λq

Mq − 1

]
1slqw

T
slq.

2In general, the definition of these sample weights will depend on the method of sampling. Here however,
we just use simple expansion weights wslq = ( Mq

mslq
)1slq, where mslq is the number of linked sample records,

and Mq is the total population number in the qthm-block.
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2.3 An asymptotic variance estimator

We now derive a variance estimator for the θ̂ based on the estimating function approach

developed in the previous subsection. Suppose that θ̂ is the solution of Hadj
wsl(θ) = 0 defined

in (18). Then the asymptotic variance of θ̂ is

VarX(θ̂) ≈ [
∂θH

adj
wsl(θ0)

]−1
VarX

[
Hadj

wsl(θ0)
]([

∂θH
adj
wsl(θ0)

]−1
)T

. (19)

Consequently, an estimator of this asymptotic variance is

V̂X(θ̂) =
[
∂θH

adj
wsl(θ̂)

]−1
V̂X

[
Hadj

wsl(θ̂)
]([

∂θH
adj
wsl(θ̂)

]−1
)T

. (20)

To calculate V̂X(θ̂), we need to first evaluate the terms ∂θH
adj
wsl(θ̂) and V̂X

[
Hadj

wsl(θ̂)
]
. In

general, Gslq depends on θ. However, in this paper, we only consider the case where Gslq is

independent of θ3. Thus,

∂θH
adj
wsl(θ̂) =

∑
q

GslqẼslsl,q∂θf slq(θ̂). (21)

Further,

VarX

[
Hadj

wsl(θ0)
]

=
∑

q

GslqVarX(y∗slq)G
T
slq. (22)

where
Σslq = VarX(y∗slq)

= VarX(Asqyq)

= EX

[
VarAX(Asqyq)

]
+ VarX

[
EAX(Asqyq)

]
.

(23)

In order to evaluate Σslq, we first consider Σq = VarX(y∗q). Let Dq = VarX(yq), and suppose

that, for i 6= j, covX(yi, yj) = 0. Then Dq can be written as

Dq = diag
[
dq

i ; i ∈ {1, . . . ,Mq}
]
.

Let

Aq =
[
aq

ij; i, j ∈ {1, . . . , Mq}
]

and

Eq =
[
eq

ij; i, j ∈ {1, . . . , Mq}
]
.

3For the linear and logistic regression cases we only consider the functional forms for Gslq that appear in
Chambers (2008). These are independent of θ.
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Then
Σq = VarX(y∗q)

= VarX(Aqyq)

= EX

[
VarAX(Aqyq)

]
+ VarX

[
EAX(Aqyq)

]
.

(24)

Note that

EX

[
VarAX(Aqyq)

]
= Ex

[
AqDqA

T
q

]
.

Since Dq is a diagonal matrix, AqA
T
q = Iq and (aq

ij)
2 = aq

ij, ∀ i, j ∈ {1, . . . , Mq}, we can

write

AqDqA
T
q = diag

[ Mq∑
j=1

(aq
ij)

2dq
j ; i ∈ {1, . . . , Mq}

]

= diag
[ Mq∑

j=1

aq
ijd

q
j ; i ∈ {1, . . . , Mq}

]
.

(25)

Hence,

EX

[
AqDqA

T
q

]
= EX

[
diag

[ Mq∑
j=1

aq
ijd

q
j ; i ∈ {1, . . . , Mq}

]]

= diag
[(

λq − 1− λq

Mq − 1

)
dq

i +
Mq(1− λq)

Mq − 1
d̄q; i ∈ {1, . . . , Mq}

]
,

(26)

where

d̄q = M−1
q

Mq∑
j=1

dq
j .

Then, by (25) and (26), it can be seen that

EX

[
VarAX(Asqyq)

]
= EX

[
diag

[ Mq∑
j=1

aq
ijd

q
j ; i ∈ {1, . . . , mslq}

]]

= diag
[(

λq − 1− λq

Mq − 1

)
dq

i +
Mq(1− λq)

Mq − 1
d̄q; i ∈ {1, . . . , mslq}

]
.

(27)

However, d̄q is not observable and so we replace it by the sample mean

d̄q
sl = m−1

slq

mslq∑
j=1

dq
j .

That is, we have the approximation

EX

[
VarAX(Asqyq)

] ≈ diag
[(

λq − 1− λq

Mq − 1

)
dq

i +
Mq(1− λq)

Mq − 1
d̄q

sl; i ∈ {1, . . . , mslq}
]
. (28)
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Also, it is shown in Chambers (2008) that

VarX

[
EAX(Aqyq)

] ≈ diag
[
(1− λq)

{
λq(fi − f̄q)

2 + f̄ (2)
q − (f̄q)

2
}
; i ∈ {1, . . . , Mq}

]
,

where f̄q = M−1
q

∑Mq

k=1 fk and f̄
(2)
q = M−1

q

∑Mq

k=1 f 2
k . In the case of VarX

[
EAX(Asqyq)

]
, this

approximation becomes

VarX

[
EAX(Asqyq)

] ≈ diag
[
(1− λq)

{
λq(fi− f̄slq)

2 + f̄
(2)
slq − (f̄slq)

2
}
; i ∈ {1, . . . , mslq}

]
, (29)

where

f̄slq = m−1
slq

mslq∑

k=1

fk

and

f̄
(2)
slq = m−1

slq

mslq∑

k=1

f 2
k .

Therefore, by (23), (28) and (29)

Σslq ≈ diag
[(

λq− 1− λq

Mq − 1

)
dq

i +
Mq(1− λq)

Mq − 1
d̄q

sl+(1−λq)
{
λq(fi− f̄slq)

2+ f̄
(2)
slq −(f̄slq)

2
}]

(30)

for all i ∈ {1, . . . , mslq}. It follows that one can calculate V̂X(θ̂) by first evaluating (30), (22)

and (21) and then substituting these values into (20).

2.4 The estimating function approach under non-ignorable linkage

In this subsection we consider a special (and extreme) case of linking, where the conditional

distribution of y∗slq given Xsq is very different from that of the corresponding conditional

distribution of y∗suq. Note however that we continue to assume that the sampling process

itself is non-informative, so the conditional distribution of yq given Xq is the same as that

of ysq given Xsq.

The linking model that we assume here is based on a linear regression relationship,

ysq = Xsqβ + esq,

where the errors esq are drawn from the N(0, σ2) distribution. In particular, we consider

the case where a disproportionate number of linked sample records, i.e. those defining y∗slq,
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correspond to positive errors under this linear regression model. As a consequence, we expect

that the mean of y∗slq will be larger than that of y∗suq. However, since the regression errors esq

are distributed as N(0, σ2), we see that although f sq = EX(ysq) is the same as in the case

of ignorable linking, clearly EX(yslq) 6= EX(ysq). One way of dealing with this problem is

to reduce the contribution of y∗slq to the estimating function by introducing ’linkage’ weights

that ensure that the weighted contribution of y∗slq is the same as that of y∗suq. To do this we

need to know the distribution of the signs of the regression errors for the linked records4.

Let pslq denote the proportion of records making up of y∗slq that have positive regression

errors, and put

y∗slq =

(
y∗+slq

y∗−slq

)
,

where y∗+slq is the subset of y∗slq defined by those linked sample records with positive regres-

sion errors, and y∗−slq denotes the remaining linked sample records, i.e. those with negative

regression errors. Further, note that, by (18)

Hadj
wsl(θ) =

∑
q

Gslq(θ)
{
y∗slq − Ẽslsl,qf slq(θ)

}
.

However, this estimating function is only unbiased when EX(y∗+slq) = EX(y∗−slq), which is not

true in this case. Consequently, we put w+
slq = 0.5

pslq
and w−

slq = 0.5
1−pslq

and define a weighted

version of y∗slq of the form

y∗wslq =

(
w+

slqy
∗+
slq

w−
slqy

∗−
slq

)
. (31)

The estimating function that should be used in this case is then

Hadj
wsl2(θ) =

∑
q

Gslq(θ)
{
y∗wslq − Ẽslsl,qf slq(θ)

}
, (32)

where

Ẽslsl,q =
[λqMq − 1

Mq − 1

]
Islq +

[ 1− λq

Mq − 1

]
1slqw

T
slq.

In the next section we use simulation to explore the performance of this weighted estimating

function.

4Clearly this is very strong assumption. However, it does allow us to investigate a bias correction method
for this situation. We aim to relax this assumption in future research.
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3 Simulation results for incomplete sample to register

linkage

In this section we use simulation to investigate the relative performances of different esti-

mators based on linked data where the linkage is from sample to register, and there is both

linkage error as well as incomplete linkage. Estimators are compared in terms of their rel-

ative bias, relative root mean squared error and coverage rate for nominal 95% confidence

intervals. The simulation designs used are similar to those in Chambers (2008), allowing us

to compare the performances of the estimators for the incomplete linkage case with those

for the complete linkage case. Box plots showing the distributions of the percentage relative

errors generated by different estimators are in the Figures.

3.1 Linear regression with random non-linking

Population values were generated for a linear regression model of the form

Y = 1 + 5X + e,

where values of the explanatory variable X were drawn from the uniform distribution over

[0,1] and values of the regression error e were drawn from the N(0, 1) distribution. The

actual data pairs (yi, xi) were randomly allocated to three m-blocks, and the linked data

pairs (y∗i , xi) then generated according to an exchangeable linkage error model with specified

probabilities of correct linkage. Finally, non-links were created by randomly selecting records

from each m-block. In particular:

• The population size was N = 4000, divided into three m-blocks, of sizes 2000, 1000

and 1000 respectively.

• The linked data pairs (y∗i , xi) were generated using independent exchangeable linkage

error mechanisms in each m-block, with specified probabilities of correct linkage.

• Following this linkage process, 1000 of the 2000 links created in the first m-block were

randomly assigned to a ’non-linkable’ status. This process was repeated in the second

m-block (500 non-links) and the third m-block (600 non-links).
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• Sample records were independently selected in each of the m-blocks via simple random

sampling without replacement, and with m-block sample sizes of n1 = 500, n2 = 300

and n3 = 200 respectively.

• The sample data used in estimation consisted of the ’linkable’ sample records in each

of these m-blocks.

Two scenarios for the probabilities of correct linkage in the three m-blocks were simulated.

These were:

• Scenario 1: λ1 = 1, λ2 = 0.95 and λ3 = 0.75.

• Scenario 2: λ1 = 0.95, λ2 = 0.75 and λ3 = 1.

In practice, the probabilities λq need to be either specified or estimated in some way. Fol-

lowing Chambers (2008) we considered two options in this regard:

1. We assumed that we knew the true values of the λq.

2. We estimated the value of λq in those m-blocks where linkage is not perfect using the

methodology described in Chambers (2008). In this case our estimates were based

on the correctly linked/incorrectly linked status of 25 randomly sub-sampled linked

records in sample in each such m-block.

Three estimators of the intercept and slope coefficients of the linear regression model 5 were

calculated. They are:

1. the naive OLS estimator (ST),

2. the Lahiri-Larsen estimator (A) and

3. the empirical BLUE (C).

The two scenarios above were independently simulated 1000 times. In each simulation,

population and linked sample data were generated and the regression parameters estimated

using the three estimators specified above. The performances of these estimators were then

5See (Chambers (2008)) for details on these estimators.
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compared in terms of relative bias, relative RMSE and the actual coverage rate for nominal

95% confidence intervals. These values are reported in Table 1.

[
Table 1 here.

]

The results set out in Table 1 display very similar patterns to those reported in Chambers

(2008), although the actual levels of relative bias and RMSE are higher. This is most

probably due to the different m-block sizes and the consequent greater incidence of incorrect

linkages in the current set of simulations. In any case, it is clear that both the Lahiri-Larsen

estimator (A) and the EBLUE (C) correct the bias of the naive estimator (ST) in both

scenarios, irrespective of whether the actual correct linkage probabilities are known or are

estimated. As noted in Chambers (2008), the EBLUE (C) outperforms the Lahiri-Larsen

estimator (A).

3.2 Logistic regression with random non-linking

In addition to the estimators ST, A and C considered in the previous subsection, we cal-

culated another bias-corrected estimator (M), based on the same weighting function as the

MLE under perfect linkage. See Chambers (2008) for more details about this estimator. We

also allowed the distribution of X to vary between m-blocks. In particular, for the m-block

with λ = 1, X values were drawn from the uniform distribution on [5,20], while for the m-

block with λ = 0.95, X values were drawn from the uniform distribution on [-5,5]. Finally,

for the remaining m-block with smallest correct linkage probability, X values were drawn

from the uniform distribution on [-20,5]. Values of Y were then generated as independently

distributed Bernoulli variables with

logit
[
pr(yi = 1|xi) = 1− xi

]
.

Simulation results for estimates of the slope parameter of the logistic model are set out in

Table 2. These show that the naive estimator (ST) is negatively biased as a consequence of

incorrect linkage. However, unlike the complete linkage results obtained in Chambers (2008),

we see that in this case the adjusted estimators M, A and C appear to overcompensate for
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this bias, while also displaying increased variability. As a consequence, it is hard to see any

advantage in using these adjusted estimators in this type of situation (large proportion of

unlinked records). Essentially, the main advantage of M, A and C here is that their coverage

performance remains superior to that of ST. As an aside, we note that the EBLUE-type

adjusted estimator C continues to be superior to the adjusted estimators M and A.

[
Table 2 here.

]

3.3 Linear regression with non-ignorable linkage

In the simulations described so far, the probability of non-linkage has been the same for all

records in an m-block, and the random variable corresponding to whether a record is linked

or not has been distributed independently of the regression error for that record. That is,

whether a record is linked or not has been ignorable, with the only effect of non-linkage

being a reduction in the number of sampled records contributing data to the analysis. In

this subsection we investigate the situation where linkage is non-ignorable, and simulate

linked data where the probability of non-linkage depends on the sign of the error in the

underlying regression model. In particular, we simulated population data using the same

linear regression model as previously,

Y = 1 + 5X + e,

but now allowed the linking process to over-represent records with positive regression errors.

We consider two cases. In the first, 60% of the linked records are randomly drawn from

those records with positive errors, while in the second this proportion is increased to 75%.

In both cases the simulations were carried out with linkage errors generated under scenario

2, and with estimators based on the actual probabilities of correct linkage. Results from

these simulations are displayed in Table 3.

[
Table 3 here.

]

As one might expect, these show that the main impact of this type of non-ignorable linkage

is to upwardly bias estimates of the intercept parameter in the population linear regression

model. When the imbalance of positive relative to negative error terms in the linkable records

is relatively small (the 60% case) it is clear that estimator C outperforms estimator A and
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both are substantially better than ST. However, when this imbalance is reasonable large (the

75% case) we see that A is preferable to C, although both A and C are still clearly better

than ST.

3.4 Linear regression with weighting for non-ignorable linkage

In the previous subsection we saw that a larger proportion of records with positive regression

errors in y∗slq tended to lead to increased bias when estimating the intercept parameter of the

underlying linear regression model. In subsection 2.4 we showed how this bias can be reduced

by using weights that adjust for this imbalance. In this subsection we present simulation

results that illustrate this weighting approach. In particular, we continued to use scenario 2,

but this time with relatively high imbalances between positive regression errors and negative

regression errors in the linked data. In particular, we simulated two situations where:

• 75% of linked records in each m-block corresponded to records with positive regression

errors,

• 90% of linked records in each m-block corresponded to records with positive regression

errors.

[
Table 4 here.

]

From the results set out in Table 4 we see that the biases in estimators A and C that were

evident in Table 3 have been effectively corrected by appropriate weighting. However, when

we compare the relative RMSEs in Table 4 with those for scenario 2 in Table 1 we see that

the price paid for this decrease in bias is an increase in variance. This is not unexpected,

since correcting the bias of an estimator generally increases its variability. We also note

that the weighted version of C used in this simulation appears to be slightly more efficient

than the corresponding weighted version of A. However, it should be kept in mind that the

’linkage’ weights used here assume that we know the probability that a record will be linked.

This is unrealistic in practice, and further work is required to investigate how these weighted

versions of A and C behave when linkage probabilities are approximate rather than exact.
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3.5 Linear regression with small samples and ignorable linkage

So far in this section we have presented simulation results for the estimating function ap-

proach when it is applied to comparatively large samples. In this final subsection we use

simulation to investigate the performance of these methods with very small samples. In par-

ticular, in this last set of simulations we generated incompletely linked sample data using the

same linear regression model as in the previous subsections, but in this case these linkages

were based on:

• A total of 30 m-blocks, made up of 10 blocks each of size 200 and 20 blocks each of

size 100 (i.e. a population of size N = 4000). Samples of size 10 were selected in each

m-block.

• Probabilities of correct linkage that were defined to be 1 for the first 10 m-blocks, 0.95

for the next 10 m-blocks and 0.75 for the last 10 m-blocks.

• Linkages that were at random within each m-block. This resulted in linked sample

sizes within m-blocks that varied from 3 to 5.

From the results set out in Table 5, it is clear that the very small linked samples in each

m-block led to the estimators A and C exhibiting substantial biases. This is in contrast

to the unbiased results that we obtained for these estimators in subsection 3.1, where the

m-block linked sample sizes were much larger.

[
Table 5 here.

]

One way of avoiding this small sample bias is to merge similar small m-blocks in order to

increase the within m-block sample size. For example, we can merge m-blocks with the same

value of λq. If this leads to a larger sample in the merged m-block, then the biases evident

in Table 5 become much smaller.

4 Conclusions and further research

In this paper we extend the adjusted estimating function approach developed in Chambers

(2008) to accommodate the sample to register incomplete linkage case, i.e. where some of

sample data cannot be linked to the register. Through simulations we show that the ad-

justed estimating function approach generally leads to unbiased and more efficient estimators
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than those (e.g. ST) defined by estimating functions that treat the linkage as perfect. In

particular, we consider the situation where the linkage process is not ignorable, so that the

distributions of the linked and unlinked sample data are different. We overcome this problem

by introducing another weight function (in addition to the usual survey weights) that reflects

the probability of linkage, and show that the corresponding weighted version of the adjusted

estimating function approach then corrects for the bias induced by non-ignorable linkage.

However, these ’linkage weights’ depend on knowing the process that governs whether a

record is linked or not, which is a strong assumption. In effect, this problem is completely

analogous to the one facing an analyst who wishes to compensate for non-ignorable non-

response in a data set. Without knowledge of the non-response process, and in particular

the response probabilities for the observed data, this adjustment can be problematic. Further

research is needed in this area.

One of problems we face in using the adjusted estimating function approach is that it leads

to the use of m-block specific plug–in estimators. These work well when the m-block sample

sizes are large, but can inefficient otherwise, as the simulations reported in the preceding

subsection demonstrate. One way to correct this is to merge m-blocks with similar linkage

behaviour (both in terms of linkage probabilities as well as probabilities of correct linkage).

However, this method only works when there are many similar m-blocks. Further research

on alternative small sample methods for dealing with incompletely linked data, e.g. MLE

based on application of the Missing Information Principle, is needed.

Another limitation of the theory outlined in this paper is that it assumes that just two data

sets are linked. This is often not the case in practice, where the linked data set used in

analysis may be the consequence of multiple linking operations. In such cases, the linkage

error structure can become extremely complicated. For example, consider three linked data

sets corresponding to the variables Y, X1 and X2 that together define the regression function

Y = g(X1, X2|θ) + e.

In this case there could be mismatches between X1 and X2, Y and X1 and Y and X2. Further,

the mismatches between X1 and X2 could be correlated with the mismatches between Y and

X1 and between Y and X2. Extending the adjusted estimating function approach to this

more complicated situation is currently being researched.
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Tables

Table 1: Simulation results for linear regression and random non- linking. Coverage is for

nominal 95% intervals.

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Simulation results for the intercept estimator

Scenario 1: λ1 = 1, λ2 = 0.95 and λ3 = 0.75

ST 16.35 17.06 19.67 20.22 64.6 61.6

A 0.04 0.73 11.12 10.96 94.7 97.0

C 0.17 0.85 10.70 10.65 94.8 96.2

Scenario 2: λ1 = 0.95, λ2 = 0.75 and λ3 = 1

ST 35.89 36.17 37.76 38.24 11.4 12.9

A 0.00 0.36 12.64 13.32 95.7 98.8

C 0.12 0.28 11.77 12.40 95.5 97.6

Simulation results for the slope estimator

Scenario 1: λ1 = 1, λ2 = 0.95 and λ3 = 0.75

ST -6.62 -6.71 17.07 17.19 52.9 52.8

A -0.10 -0.19 8.66 8.50 94.8 97.2

C -0.15 -0.22 8.32 8.22 94.9 96.496.4

Scenario 2: λ1 = 0.95, λ2 = 0.75 and λ3 = 1

ST -14.29 -14.44 33.31 33.70 4.7 5.5

A 0.06 -0.10 10.31 10.59 95.1 99.4

C -0.01 -0.10 9.54 9.84 95.2 97.7
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Table 2: Simulation results for slope estimators in logistic regression and random non-linking.

Coverage is for nominal 95% intervals.

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Scenario 1: λ1 = 1, λ2 = 0.95 and λ3 = 0.75

ST -8.39 -8.59 18.05 17.65 80.1 80.4

M 9.74 11.45 32.98 45.92 95.3 96.9

A 9.77 11.51 32.89 45.90 95.4 96.9

C 8.35 10.94 32.98 69.48 96.0 96.4

Scenario 2: λ1 = 0.95, λ2 = 0.75 and λ3 = 1

ST -7.23 -7.00 19.68 19.81 82.6 83.7

M 17.50 17.32 69.17 86.79 95.1 95.7

A 16.37 15.45 57.02 57.95 95.5 95.7

C 11.43 12.86 46.25 46.94 95.5 96.4

Table 3: Simulation results for linear regression with non-ignorable linking. Scenario 2 with

known λ. Coverage is for nominal 95% intervals.

Estimator Relative Bias Relative RMSE Coverage

Intercept slope Intercept slope Intercept slope

Scenario 2: 60% of linked records with positive errors

ST 27.07 -14.46 29.58 33.71 36.3 6.0

A -8.86 -0.12 15.85 10.58 88.7 93.5

C -2.64 -0.16 11.78 10.08 95.5 93.2

Scenario 2: 75% of linked records with positive errors

ST 41.20 -14.19 42.82 33.17 4.4 5.5

A 5.35 0.16 13.89 10.70 93.1 94.3

C 13.96 0.01 17.70 10.01 81.5 94.0
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Table 4: Simulation results for linear regression with non-ignorable linking and weighted

estimators. Scenario 2 with estimated λ. Coverage is for nominal 95% intervals.

Estimator Relative Bias Relative RMSE Coverage

Intercept slope Intercept slope Intercept slope

Scenario 2, estimated λ: 75% of linked records with positive errors for all blocks

ST 34.82 -13.94 37.66 33.94 47.5 35.2

A -1.20 0.46 15.74 14.79 99.5 98.5

C -1.00 0.40 14.94 14.18 99.5 98.6

Scenario 2, estimated λ: 90% of linked records with positive errors for all blocks

ST 36.28 -13.41 46.94 42.72 91.0 82.1

A -0.12 1.14 34.11 34.74 99.7 97.0

C -0.09 1.14 33.98 34.66 99.7 96.9

Table 5: Simulation results for linear regression with small linked samples and random non-

linking (linked sample sizes between 3 and 5). Coverage is for nominal 95% intervals.

Estimator Relative Bias Relative RMSE Coverage

Intercept slope Intercept slope Intercept slope

Scenario 2, Known λ

ST 14.51 -9.95 25.76 28.17 88.8 72.0

A -9.52 -0.34 24.13 18.15 91.7 94.6

C -9.88 -0.31 23.35 17.44 91.4 93.5
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Figure 1: Simulated percentage relative errors for intercept and slope coefficients in linear

regression under scenario 1 and random non-linking.
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Figure 2: Simulated percentage relative errors for intercept and slope coefficients in linear

regression under scenario 2 and random non-linking.
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Figure 3: Simulated percentage relative errors for slope coefficient in logistic regression under

scenario 1 and random non-linking.
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Figure 4: Simulated percentage relative errors for slope coefficient in logistic regression under

scenario 2 and random non-linking.
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Figure 5: Simulated percentage relative errors for intercept coefficient in linear regression

with non-ignorable linking (60% of linked records with positive errors). Scenario 2 with

known λ.
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Figure 6: Simulated percentage relative errors for slope coefficient in linear regression with

non-ignorable linking (75% of linked records with positive errors). Scenario 2 with known λ.
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Figure 7: Simulated percentage relative errors for intercept coefficient in linear regression

with non-ignorable linking (75% of linked records with positive errors). Scenario 2 with

estimated λ. Weighting used to correct for non-ignorable linking.
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Figure 8: Simulated percentage relative errors for slope coefficient in linear regression with

non-ignorable linking (90% of linked records with positive errors). Scenario 2 with estimated

λ. Weighting used to correct for non-ignorable linking.
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Figure 9: Simulated percentage relative errors for slope coefficient in linear regression under

scenario 2 and random non-linking, with linked sample sizes between 3 and 5.
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