439 research outputs found

    Effect of Winter Grazing Management of Stockpiled Native Pastures of Basaltic Soils of Uruguay on Daily Gains of Heifers

    Get PDF
    The effect of three grazing systems of fall stockpiled native pastures on the winter gains of 66 Hereford heifers (135 kg) was studied. Treatments were: continuos grazing (CG); (C7) the plot was divided in 12 and each was grazed for 7 days and (C28), the plot was divided in 3 and each were grazed for 28 days. Heifers were weighed every 14 days and grazing behaviour was recorded. Stockpiled HM was greater (P\u3c 0.05) in C7 and C28 than in CG (988, 912, and 604 kg DM/ha, respectively). Herbage allowance (HA) was greater (P\u3c 0.01) in CG followed by C28 and C7 (11.7, 6.6 and 5.9 kg DM/100 kg LW, respectively). Post-grazing HM was greater (P0.05) in all pastures (CP 10.2%, NDF 71.2%, ADF 41.3% and ash 14.4%). Final LW of heifers were similar (P\u3e 0.05) (167, 162 and 160 kg for CG, C7 and C28, respectively). A very mild winter favoured exceptional gains which tended to be higher in CG (0.353 kg/day) than in C7 (0.305 kg/day) and C28 (0.278 kg/day). Grazing time was greater (P\u3c 0.05) in CG and bite rate was lower in C28 than in C7 and CG heifers. Grazing management did not affect daily gains. Nevertheless, total remaining HM in C28 and more so in C7 more than doubled that in CG, where more animals could have grazed with increasing total productivity

    High Temperature Laser Sintering: An investigation into mechanical properties and shrinkage characteristics of Poly (Ether Ketone) structures

    Get PDF
    Copyright © 2014 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Materials and Design. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials and Design, Vol. 61 (2014). DOI: 10.1016/j.matdes.2014.04.035This paper presents an investigation into the properties of Poly Ether Ketone (PEK) components using the commercial high temperature laser sintering system, EOSINT P800. The shrinkage and the mechanical performance of components across the entire build chamber have been tested and a non-linear shrinkage profile has been obtained. The middle of the build chamber recorded the highest degree of shrinkage and the shrinkage in Z direction had the largest variation. The laser sintered components built in X and Y directions recorded a 10% lower tensile strength than the injection moulded samples of the same material where those built in the Z direction showed an approximately 50% decrease in strength in comparison with the injection moulded test specimens. The crystallinity between the skin and the core of the sintered samples was different; varied with the position within the build chamber and coincided with noticeable sample colour changes

    Mixed Fattening of Steers and Lambs on Improved Grasslands in Uruguay: II. Animal Performance and Productivity

    Get PDF
    In cow-calf operations in Uruguay, mixed cattle and sheep grazing on rangelands is predominant, while fattening is a specialised process. Within certain limits of the lamb/steer ratio and stocking rate, a complementary grazing effect occurs under mixed grazing, improving net results (Nolan & Connolly, 1977; Risso et al., 2002). These trials characterise animal performance under such management

    Mixed Fattening of Steers and Lambs on Improved Grasslands in Uruguay: I. Pasture Performance

    Get PDF
    The use of P fertilisers together with legume broadcasting is a low cost and high impact technology for improving native grassland (Risso et al., 2001). Its use is increasing in Uruguay, although not for mixed grazing, even though this management is a common practice on native grasslands. Good pasture response may occur under mixed grazing when it is adequately managed (Nolan & Connolly, 1989). The following trials characterise pasture response with such management, in Uruguayan conditions

    QAPgrid: A Two Level QAP-Based Approach for Large-Scale Data Analysis and Visualization

    Get PDF
    Background: The visualization of large volumes of data is a computationally challenging task that often promises rewarding new insights. There is great potential in the application of new algorithms and models from combinatorial optimisation. Datasets often contain “hidden regularities” and a combined identification and visualization method should reveal these structures and present them in a way that helps analysis. While several methodologies exist, including those that use non-linear optimization algorithms, severe limitations exist even when working with only a few hundred objects. Methodology/Principal Findings: We present a new data visualization approach (QAPgrid) that reveals patterns of similarities and differences in large datasets of objects for which a similarity measure can be computed. Objects are assigned to positions on an underlying square grid in a two-dimensional space. We use the Quadratic Assignment Problem (QAP) as a mathematical model to provide an objective function for assignment of objects to positions on the grid. We employ a Memetic Algorithm (a powerful metaheuristic) to tackle the large instances of this NP-hard combinatorial optimization problem, and we show its performance on the visualization of real data sets. Conclusions/Significance: Overall, the results show that QAPgrid algorithm is able to produce a layout that represents the relationships between objects in the data set. Furthermore, it also represents the relationships between clusters that are feed into the algorithm. We apply the QAPgrid on the 84 Indo-European languages instance, producing a near-optimal layout. Next, we produce a layout of 470 world universities with an observed high degree of correlation with the score used by the Academic Ranking of World Universities compiled in the The Shanghai Jiao Tong University Academic Ranking of World Universities without the need of an ad hoc weighting of attributes. Finally, our Gene Ontology-based study on Saccharomyces cerevisiae fully demonstrates the scalability and precision of our method as a novel alternative tool for functional genomics

    Analysis of the RLMS Adaptive Beamforming Algorithm Implemented with Finite Precision

    Get PDF
    This paper studies the influence of the use of finite wordlength on the operation of the RLMS adaptive beamformingalgorithm. The convergence behavior of RLMS, based on the minimum mean square error (MSE), is analyzed for operation with finite precision. Computer simulation results verify that a wordlength of nine bits is sufficient for the RLMS algorithm to achieve performance close to that provided by full precision. The performance measures used include residual MSE, rate of convergence, error vector magnitude (EVM), and beam pattern. Based on all these measures, it is shown that the RLMS algorithm outperforms other earlier algorithms, such as least mean square (LMS), recursive least square (RLS), modified robust variable step size (MRVSS) and constrained stability LMS (CSLMS)

    Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow

    Get PDF
    We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory. The prompt gamma-ray emission was detected by the Fermi GRB Monitor (GBM), the Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT) and the long-lived afterglow emission was subsequently observed by the GBM, LAT, Swift X-ray Telescope (XRT), and Swift UV Optical Telescope. The early-time observations reveal multiple emission components that evolve independently, with a delayed power-law component that exhibits significant spectral attenuation above 40 MeV in the first few seconds of the burst. This power-law component transitions to a harder spectrum that is consistent with the afterglow emission observed by the XRT at later times. This afterglow component is clearly identifiable in the GBM and BAT light curves as a slowly fading emission component on which the rest of the prompt emission is superimposed. As a result, we are able to observe the transition from internal-shock- to external-shock-dominated emission. We find that the temporal and spectral evolution of the broadband afterglow emission can be well modeled as synchrotron emission from a forward shock propagating into a wind-like circumstellar environment. We estimate the initial bulk Lorentz factor using the observed high-energy spectral cutoff. Considering the onset of the afterglow component, we constrain the deceleration radius at which this forward shock begins to radiate in order to estimate the maximum synchrotron energy as a function of time. We find that even in the LAT energy range, there exist high-energy photons that are in tension with the theoretical maximum energy that can be achieved through synchrotron emission from a shock. These violations of the maximum synchrotron energy are further compounded by the detection of very high-energy (VHE) emission above 300 GeV by MAGIC concurrent with our observations. We conclude that the observations of VHE photons from GRB 190114C necessitates either an additional emission mechanism at very high energies that is hidden in the synchrotron component in the LAT energy range, an acceleration mechanism that imparts energy to the particles at a rate that is faster than the electron synchrotron energy-loss rate, or revisions of the fundamental assumptions used in estimating the maximum photon energy attainable through the synchrotron process

    Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease

    Get PDF
    Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer's disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing

    High-energy emission from a magnetar giant flare in the Sculptor galaxy

    Get PDF
    Magnetars are the most highly magnetized neutron stars in the cosmos (with magnetic field 1013–1015 G). Giant flares from magnetars are rare, short-duration (about 0.1 s) bursts of hard X-rays and soft γ rays1,2. Owing to the limited sensitivity and energy coverage of previous telescopes, no magnetar giant flare has been detected at gigaelectronvolt (GeV) energies. Here, we report the discovery of GeV emission from a magnetar giant flare on 15 April 2020 (refs. 3,4 and A. J. Castro-Tirado et al., manuscript in preparation). The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope detected GeV γ rays from 19 s until 284 s after the initial detection of a signal in the megaelectronvolt (MeV) band. Our analysis shows that these γ rays are spatially associated with the nearby (3.5 megaparsecs) Sculptor galaxy and are unlikely to originate from a cosmological γ-ray burst. Thus, we infer that the γ rays originated with the magnetar giant flare in Sculptor. We suggest that the GeV signal is generated by an ultra-relativistic outflow that first radiates the prompt MeV-band photons, and then deposits its energy far from the stellar magnetosphere. After a propagation delay, the outflow interacts with environmental gas and produces shock waves that accelerate electrons to very high energies; these electrons then emit GeV γ rays as optically thin synchrotron radiation. This observation implies that a relativistic outflow is associated with the magnetar giant flare, and suggests the possibility that magnetars can power some short γ-ray bursts

    Independent Validation of the SWMM Green Roof Module

    Get PDF
    Green roofs are a popular Sustainable Drainage Systems (SuDS) technology. They provide multiple benefits, amongst which the retention of rainfall and detention of runoff are of particular interest to stormwater engineers. The hydrological performance of green roofs has been represented in various models, including the Storm Water Management Model (SWMM). The latest version of SWMM includes a new LID green roof module, which makes it possible to model the hydrological performance of a green roof by directly defining the physical parameters of a green roof’s three layers. However, to date, no study has validated the capability of this module for representing the hydrological performance of an extensive green roof in response to actual rainfall events. In this study, data from a previously-monitored extensive green roof test bed has been utilised to validate the SWMM green roof module for both long-term (173 events over a year) and short-term (per-event) simulations. With only 0.357% difference between measured and modelled annual retention, the uncalibrated model provided good estimates of total annual retention, but the modelled runoff depths deviated significantly from the measured data at certain times (particularly during summer) in the year. Retention results improved (with the difference between modelled and measured annual retention decreasing to 0.169% and the Nash-Sutcliffe Model Efficiency (NSME) coefficient for per-event rainfall depth reaching 0.948) when reductions in actual evapotranspiration due to reduced substrate moisture availability during prolonged dry conditions were used to provide revised estimates of monthly ET. However, this aspect of the model’s performance is ultimately limited by the failure to account for the influence of substrate moisture on actual ET rates. With significant differences existing between measured and simulated runoff and NSME coefficients of below 0.5, the uncalibrated model failed to provide reasonable predictions of the green roof’s detention performance, although this was significantly improved through calibration. To precisely model the hydrological behaviour of an extensive green roof with a plastic board drainage layer, some of the modelling structures in SWMM green roof module require further refinement
    • …
    corecore