187 research outputs found

    Structural dichroism in the antiferromagnetic insulating phase of V_2O_3

    Full text link
    We performed near-edge x-ray absorption spectroscopy (XANES) at V K edge in the antiferromagnetic insulating (AFI) phase of a 2.8% Cr-doped V_2O_3 single crystal. Linear dichroism of several percent is measured in the hexagonal plane and found to be in good agreement with ab-initio calculations based on multiple scattering theory. This experiment definitively proves the structural origin of the signal and therefore solves a controversy raised by previous interpretations of the same dichroism as non-reciprocal. It also calls for a further investigation of the role of the magnetoelectric annealing procedure in cooling to the AFI phase.Comment: 4 pages 3 figures. To be published in Phys. Rev. B (2005

    All-cause mortality and estimated renal function in type 2 diabetes mellitus outpatients: is there a relationship with the equation used?

    Get PDF
    BACKGROUND: We investigated the relationship between serum creatinine (SCr) and estimated glomerular filtration rate (eGFR), evaluated by different formulae, and all-cause mortality (ACM) in type 2 diabetes mellitus (T2DM) outpatients. METHODS: This observational cohort study considered 1365 T2DM outpatients, who had been followed up for a period of up to 11 years. eGFR was estimated using several equations. RESULTS: Seventy subjects (5.1%) died after a follow-up of 9.8 ± 3 years. Univariate analysis showed that diagnosis of nephropathy (odds ratio (OR): 2.554, 95% confidence interval (CI): 1.616-4.038, p < 0.001) and microvascular complications (OR: 2.281, 95% CI: 1.449-3.593, p < 0.001) were associated with ACM. Receiving operating characteristic (ROC) curves showed that the areas under the curve for ACM were similar using the different eGFR equations. eGFR values were predictors of ACM, and the hazard ratios (HRs) of the different equations for eGFR estimation were similar. CONCLUSION: In our cohort of T2DM outpatients, different eGFR equations perform similarly in predicting ACM, whereas SCr did not

    Oligoasthenoteratozoospermia and Infertility in Mice Deficient for miR-34b/c and miR-449 Loci

    Get PDF
    Male fertility requires the continuous production of high quality motile spermatozoa in abundance. Alterations in all three metrics cause oligoasthenoteratozoospermia, the leading cause of human sub/infertility. Post-mitotic spermatogenesis inclusive of several meiotic stages and spermiogenesis (terminal spermatozoa differentiation) are transcriptionally inert, indicating the potential importance for the post-transcriptional microRNA (miRNA) gene-silencing pathway therein. We found the expression of miRNA generating enzyme Dicer within spermatogenesis peaks in meiosis with critical functions in spermatogenesis. In an expression screen we identified two miRNA loci of the miR-34 family (miR-34b/c and miR-449) that are specifically and highly expressed in post-mitotic male germ cells. A reduction in several miRNAs inclusive of miR-34b/c in spermatozoa has been causally associated with reduced fertility in humans. We found that deletion of both miR34b/c and miR-449 loci resulted in oligoasthenoteratozoospermia in mice. MiR-34bc/449-deficiency impairs both meiosis and the final stages of spermatozoa maturation. Analysis of miR-34bc-/-;449-/- pachytene spermatocytes revealed a small cohort of genes deregulated that were highly enriched for miR-34 family target genes. Our results identify the miR-34 family as the first functionally important miRNAs for spermatogenesis whose deregulation is causal to oligoasthenoteratozoospermia and infertility

    Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch

    Get PDF
    During male meiotic prophase in mammals, X and Y are in a largely unsynapsed configuration, which is thought to trigger meiotic sex chromosome inactivation (MSCI). In avian species, females are ZW, and males ZZ. Although Z and W in chicken oocytes show complete, largely heterologous synapsis, they too undergo MSCI, albeit only transiently. The W chromosome is already inactive in early meiotic prophase, and inactive chromatin marks may spread on to the Z upon synapsis. Mammalian MSCI is considered as a specialised form of the general meiotic silencing mechanism, named meiotic silencing of unsynapsed chromatin (MSUC). Herein, we studied the avian form of MSUC, by analysing the behaviour of the peculiar germline restricted chromosome (GRC) that is present as a single copy in zebra finch spermatocytes. In the female germline, this chromosome is present in two copies, which normally synapse and recombine. In contrast, during male meiosis, the single GRC is always eliminated. We found that the GRC in the male germline is silenced from early leptotene onwards, similar to the W chromosome in avian oocytes. The GRC remains largely unsynapsed throughout meiotic prophase I, although patches of SYCP1 staining indicate that part of the GRC may self-synapse. In addition, the GRC is largely devoid of meiotic double strand breaks. We observed a lack of the inner centromere protein INCENP on the GRC and elimination of the GRC following metaphase I. Subsequently, the GRC forms a micronucleus in which the DNA is fragmented. We conclude that in contrast to MSUC in mammals, meiotic silencing of this single chromosome in the avian germline occurs prior to, and independent of DNA double strand breaks and chromosome pairing, hence we have named this phenomenon meiotic silencing prior to synapsis (MSPS)

    Post-meiotic transcription in mouse testes detected with spermatid cDNA clones

    Full text link
    cDNA clones to poly(A) + mRNA from spermatids have been obtained to study gene transcription in post-meiotic germ cells. Four cDNA clones detect mRNAs that increase in abundance in post-meiotic germ cells. One clone, pPM459, was shown to correspond to an mRNA that is transcribed after meiosis. Pulse-labelling experiments demonstrate transcription o5 the message in spermatids. These data constitute further evidence for post-meiotic gene transcription in spermatids.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44190/1/10540_2005_Article_BF01116696.pd

    UBR2 of the N-End Rule Pathway Is Required for Chromosome Stability via Histone Ubiquitylation in Spermatocytes and Somatic Cells

    Get PDF
    The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells

    Factors that could explain the increasing prevalence of type 2 diabetes among adults in a Canadian province: a critical review and analysis

    Get PDF
    Abstract: Background: The prevalence of diabetes has increased since the last decade in New Brunswick. Identifying factors contributing to the increase in diabetes prevalence will help inform an action plan to manage the condition. The objective was to describe factors that could explain the increasing prevalence of type 2 diabetes in New Brunswick since 2001. Methods: A critical literature review was conducted to identify factors potentially responsible for an increase in prevalence of diabetes. Data from various sources were obtained to draw a repeated cross-sectional (2001–2014) description of these factors concurrently with changes in the prevalence of type 2 diabetes in New Brunswick. Linear regressions, Poisson regressions and Cochran Armitage analysis were used to describe relationships between these factors and time. Results: Factors identified in the review were summarized in five categories: individual-level risk factors, environmental risk factors, evolution of the disease, detection effect and global changes. The prevalence of type 2 diabetes has increased by 120% between 2001 and 2014. The prevalence of obesity, hypertension, prediabetes, alcohol consumption, immigration and urbanization increased during the study period and the consumption of fruits and vegetables decreased which could represent potential factors of the increasing prevalence of type 2 diabetes. Physical activity, smoking, socioeconomic status and education did not present trends that could explain the increasing prevalence of type 2 diabetes. During the study period, the mortality rate and the conversion rate from prediabetes to diabetes decreased and the incidence rate increased. Suggestion of a detection effect was also present as the number of people tested increased while the HbA1c and the age at detection decreased. Period and birth cohort effect were also noted through a rise in the prevalence of type 2 diabetes across all age groups, but greater increases were observed among the younger cohorts. Conclusions: This study presents a comprehensive overview of factors potentially responsible for population level changes in prevalence of type 2 diabetes. Recent increases in type 2 diabetes in New Brunswick may be attributable to a combination of some individual-level and environmental risk factors, the detection effect, the evolution of the disease and global changes

    Temporally Regulated Traffic of HuR and Its Associated ARE-Containing mRNAs from the Chromatoid Body to Polysomes during Mouse Spermatogenesis

    Get PDF
    International audienceBACKGROUND: In mammals, a temporal disconnection between mRNA transcription and protein synthesis occurs during late steps of germ cell differentiation, in contrast to most somatic tissues where transcription and translation are closely linked. Indeed, during late stages of spermatogenesis, protein synthesis relies on the appropriate storage of translationally inactive mRNAs in transcriptionally silent spermatids. The factors and cellular compartments regulating mRNA storage and the timing of their translation are still poorly understood. The chromatoid body (CB), that shares components with the P. bodies found in somatic cells, has recently been proposed to be a site of mRNA processing. Here, we describe a new component of the CB, the RNA binding protein HuR, known in somatic cells to control the stability/translation of AU-rich containing mRNAs (ARE-mRNAs). METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of cell imagery and sucrose gradient fractionation, we show that HuR localization is highly dynamic during spermatid differentiation. First, in early round spermatids, HuR colocalizes with the Mouse Vasa Homolog, MVH, a marker of the CB. As spermatids differentiate, HuR exits the CB and concomitantly associates with polysomes. Using computational analyses, we identified two testis ARE-containing mRNAs, Brd2 and GCNF that are bound by HuR and MVH. We show that these target ARE-mRNAs follow HuR trafficking, accumulating successively in the CB, where they are translationally silent, and in polysomes during spermatid differentiation. CONCLUSIONS/SIGNIFICANCE: Our results reveal a temporal regulation of HuR trafficking together with its target mRNAs from the CB to polysomes as spermatids differentiate. They strongly suggest that through the transport of ARE-mRNAs from the CB to polysomes, HuR controls the appropriate timing of ARE-mRNA translation. HuR might represent a major post-transcriptional regulator, by promoting mRNA storage and then translation, during male germ cell differentiation

    Genetically enhanced asynapsis of autosomal chromatin promotes transcriptional dysregulation and meiotic failure

    Get PDF
    During meiosis, pairing of homologous chromosomes and their synapsis are essential prerequisites for normal male gametogenesis. Even limited autosomal asynapsis often leads to spermatogenic impairment, the mechanism of which is not fully understood. The present study was aimed at deliberately increasing the size of partial autosomal asynapsis and analysis of its impact on male meiosis. For this purpose, we studied the effect of t12 haplotype encompassing four inversions on chromosome 17 on mouse autosomal translocation T(16;17)43H (abbreviated T43H). The T43H/T43H homozygotes were fully fertile in both sexes, while +/T43H heterozygous males, but not females, were sterile with meiotic arrest at late pachynema. Inclusion of the t12 haplotype in trans to the T43H translocation resulted in enhanced asynapsis of the translocated autosome, ectopic phosphorylation of histone H2AX, persistence of RAD51 foci, and increased gene silencing around the translocation break. Increase was also on colocalization of unsynapsed chromatin with sex body. Remarkably, we found that transcriptional silencing of the unsynapsed autosomal chromatin precedes silencing of sex chromosomes. Based on the present knowledge, we conclude that interference of meiotic silencing of unsynapsed autosomes with meiotic sex chromosome inactivation is the most likely cause of asynapsis-related male sterility

    Chromatin Organization in Sperm May Be the Major Functional Consequence of Base Composition Variation in the Human Genome

    Get PDF
    Chromatin in sperm is different from that in other cells, with most of the genome packaged by protamines not nucleosomes. Nucleosomes are, however, retained at some genomic sites, where they have the potential to transmit paternal epigenetic information. It is not understood how this retention is specified. Here we show that base composition is the major determinant of nucleosome retention in human sperm, predicting retention very well in both genic and non-genic regions of the genome. The retention of nucleosomes at GC-rich sequences with high intrinsic nucleosome affinity accounts for the previously reported retention at transcription start sites and at genes that regulate development. It also means that nucleosomes are retained at the start sites of most housekeeping genes. We also report a striking link between the retention of nucleosomes in sperm and the establishment of DNA methylation-free regions in the early embryo. Taken together, this suggests that paternal nucleosome transmission may facilitate robust gene regulation in the early embryo. We propose that chromatin organization in the male germline, rather than in somatic cells, is the major functional consequence of fine-scale base composition variation in the human genome. The selective pressure driving base composition evolution in mammals could, therefore, be the need to transmit paternal epigenetic information to the zygote
    • …
    corecore