585 research outputs found

    Reduction techniques of the back gate effect in the SOI Pixel Detector

    Get PDF
    We have fabricated monolithic pixel sensors in 0.2 μm Silicon-On-Insulator (SOI) CMOS technology, consisting of a thick sensor layer and a thin circuit layer with an insulating buried-oxide, which has many advantages. However, it has been found that the applied electric field in the sensor layer also affects the transistor operation in the adjacent circuit layer. This limits the applicable sensor bias well below the full depletion voltage. To overcome this, we performed a TCAD simulation and added an additional p-well (buried pwell) in the SOI process. Designs and preliminary results are presented

    Changing shapes in the nanoworld

    Full text link
    What are the mechanisms leading to the shape relaxation of three dimensional crystallites ? Kinetic Monte Carlo simulations of fcc clusters show that the usual theories of equilibration, via atomic surface diffusion driven by curvature, are verified only at high temperatures. Below the roughening temperature, the relaxation is much slower, kinetics being governed by the nucleation of a critical germ on a facet. We show that the energy barrier for this step linearly increases with the size of the crystallite, leading to an exponential dependence of the relaxation time.Comment: 4 pages, 5 figures. Accepted by Phys Rev Let

    Sector logic implementation for the ATLAS endcap level-1 muon trigger

    Get PDF
    We present development of the Sector Logic for the ATLAS endcap Level-1 (LVL1) muon trigger. The muon tracks from the interaction point (IP) are bent by the magnetic fields induced by the ATLAS toroidal magnets. The Sector Logic reconstructs three dimensional muon tracks with six levels of transverse momentum (pT) by combining two sets (R-Z and φ-Z) of information from the Thin Gap Chamber (TGC) detectors. Then, it selects two highest pT tracks in each trigger sector. The Sector Logic module is designed in pipelined structure to achieve no-dead-time operation and shorter latency. Look-Up-Tables (LUTs) are used so that any pT threshold level can be set. To achieve these, we adopted SRAM embedded type FPGA devices. The design and its performance are given in this presentation

    Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central dd++Au Collisions at sNN\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in dd++Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central pp++Pb collisions at sNN\sqrt{s_{_{NN}}}=5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in dd++Au collisions compared to those seen in pp++Pb collisions at the LHC. The larger extracted v2v_2 values in dd++Au collisions at RHIC are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from pp++Pb collisions. When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.Comment: 375 authors, 7 pages, 5 figures. Published in Phys. Rev. Lett. v2 has minor changes to text and figures in response to PRL referee suggestions. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Centrality categorization for R_{p(d)+A} in high-energy collisions

    Full text link
    High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we find that the connection to geometry is confirmed by measuring the fraction of events in which a neutron from the deuteron does not interact with the nucleus. As an application, we consider the nuclear modification factors R_{p(d)+A}, for which there is a potential bias in the measured centrality dependent yields due to auto-correlations between the process of interest and the backward rapidity multiplicity. We determine the bias correction factor within this framework. This method is further tested using the HIJING Monte Carlo generator. We find that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an order of magnitude larger and strongly p_T dependent, likely due to the larger effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore