826 research outputs found
Diffuse-interface model for rapid phase transformations in nonequilibrium systems
A thermodynamic approach to rapid phase transformations within a diffuse
interface in a binary system is developed. Assuming an extended set of
independent thermodynamic variables formed by the union of the classic set of
slow variables and the space of fast variables, we introduce finiteness of the
heat and solute diffusive propagation at the finite speed of the interface
advancing. To describe the transformation within the diffuse interface, we use
the phase-field model which allows us to follow the steep but smooth change of
phases within the width of diffuse interface. The governing equations of the
phase-field model are derived for the hyperbolic model, model with memory, and
for a model of nonlinear evolution of transformation within the
diffuse-interface. The consistency of the model is proved by the condition of
positive entropy production and by the outcomes of the fluctuation-dissipation
theorem. A comparison with the existing sharp-interface and diffuse-interface
versions of the model is given.Comment: 15 pages, regular article submitted to Physical Review
Knudsen Effect in a Nonequilibrium Gas
From the molecular dynamics simulation of a system of hard-core disks in
which an equilibrium cell is connected with a nonequilibrium cell, it is
confirmed that the pressure difference between two cells depends on the
direction of the heat flux. From the boundary layer analysis, the velocity
distribution function in the boundary layer is obtained. The agreement between
the theoretical result and the numerical result is fairly good.Comment: 4pages, 4figure
Pumping Speed Measurement and Analysis for the Turbo Booster Pump
This study applies testing apparatus and a computational approach to examine a newly designed spiral-grooved turbo booster pump (TBP), which has both volume type and momentum transfer type vacuum pump functions, and is capable
of operating at optimum discharge under pressures from approximately 1000 Pa to a high vacuum. Transitional flow pumping speed is increased by a well-designed connecting
element. Pumping performance is predicted and examined via two computational approaches, namely the computational fluid dynamics (CFD) method and the direct simulation Monte Carlo (DSMC) method. In CFD analysis, comparisons of measured and calculated inlet pressure in the slip and continuum flow demonstrate the accuracy of the
calculation. Meanwhile, in transition flow, the continuum model of CFD is unsuitable for calculating such rarefied gas. The pumping characteristics for a full 3D model on a rotating frame in transition and molecular regimes thus are simulated using the DSMC method and then confirmed experimentally. However, when the Knudsen number is in the
range 0.5 < Kn < 0.1, neither CFD computation nor DSMC simulation is suitable for analyzing the pumping speed of the turbo booster pump. In this situation, the experimental
approach is the most appropriate and effective method for analyzing pumping speed. Moreover, the developed pump is tested using assessment systems constructed according to ISO and JVIS-005 standards, respectively. Comparisons are also made with other turbo pumps. The compared results show that the turbo booster pump presented here has good
foreline performance
Identification, cDNA cloning, and targeted deletion of p70, a novel, ubiquitously expressed SH3 domain-containing protein
In a screen for proteins that interact with Jak2, we identified a previously uncharacterized 70-kDa protein and cloned the corresponding cDNA. The predicated sequence indicates that p70 contains an SH3 domain and a C-terminal domain with similarities to the catalytic motif of phosphoglycerate mutase. p70 transcripts were found in all tissues examined. Similarly, when an antibody raised against a C-terminal peptide to analyze p70 protein expression was used, all murine tissues examined were found to express p70. To investigate the in vivo role of p70, we generated a p70-deficient mouse strain. Mice lacking p70 are viable, develop normally, and do not display any obvious abnormalities. No differences were detected in various hematological parameters, including bone marrow colony-forming ability, in response to cytokines that utilize Jak2. In addition, no impairment in B- and T-cell development and proliferative ability was detected
Some analytical models of radiating collapsing spheres
We present some analytical solutions to the Einstein equations, describing
radiating collapsing spheres in the diffusion approximation. Solutions allow
for modeling physical reasonable situations. The temperature is calculated for
each solution, using a hyperbolic transport equation, which permits to exhibit
the influence of relaxational effects on the dynamics of the system.Comment: 17 pages Late
Magnetoresistance of a two-dimensional electron gas with spatially periodic lateral modulations: Exact consequences of Boltzmann's equation
On the basis of Boltzmann's equation, and including anisotropic scattering in
the collision operator, we investigate the effect of one-dimensional
superlattices on two-dimensional electron systems. In addition to superlattices
defined by static electric and magnetic fields, we consider mobility
superlattices describing a spatially modulated density of scattering centers.
We prove that magnetic and electric superlattices in -direction affect only
the resistivity component if the mobility is homogeneous, whereas a
mobility lattice in -direction in the absence of electric and magnetic
modulations affects only . Solving Boltzmann's equation numerically,
we calculate the positive magnetoresistance in weak magnetic fields and the
Weiss oscillations in stronger fields within a unified approach.Comment: submitted to PR
Phase-field approach to heterogeneous nucleation
We consider the problem of heterogeneous nucleation and growth. The system is
described by a phase field model in which the temperature is included through
thermal noise. We show that this phase field approach is suitable to describe
homogeneous as well as heterogeneous nucleation starting from several general
hypotheses. Thus we can investigate the influence of grain boundaries,
localized impurities, or any general kind of imperfections in a systematic way.
We also put forward the applicability of our model to study other physical
situations such as island formation, amorphous crystallization, or
recrystallization.Comment: 8 pages including 7 figures. Accepted for publication in Physical
Review
Steady State Thermodynamics of Langevin Systems
We study Langevin dynamics describing nonequilibirum steady states. Employing
the phenomenological framework of steady state thermodynamics constructed by
Oono and Paniconi [Prog. Theor. Phys. Suppl. {\bf130}, 29 (1998)], we find that
the extended form of the second law which they proposed holds for transitions
between steady states and that the Shannon entropy difference is related to the
excess heat produced in an infinitely slow operation. A generalized version of
the Jarzynski work relation plays an important role in our theory.Comment: 4 page
Stochastic evolution of cosmological parameters in the early universe
We develop a stochastic formulation of cosmology in the early universe, after
considering the scatter in the redshift-apparent magnitude diagram in the early
epochs as an observational evidence for the non-deterministic evolution of
early universe. We consider the stochastic evolution of density parameter in
the early universe after the inflationary phase qualitatively, under the
assumption of fluctuating factor in the equation of state, in the
Fokker-Planck formalism. Since the scale factor for the universe depends on the
energy density, from the coupled Friedmann equations we calculated the two
variable probability distribution function assuming a flat space geometry.Comment: 10 page
EUV spectra of highly-charged ions W-W relevant to ITER diagnostics
We report the first measurements and detailed analysis of extreme ultraviolet
(EUV) spectra (4 nm to 20 nm) of highly-charged tungsten ions W to
W obtained with an electron beam ion trap (EBIT). Collisional-radiative
modelling is used to identify strong electric-dipole and magnetic-dipole
transitions in all ionization stages. These lines can be used for impurity
transport studies and temperature diagnostics in fusion reactors, such as ITER.
Identifications of prominent lines from several W ions were confirmed by
measurement of isoelectronic EUV spectra of Hf, Ta, and Au. We also discuss the
importance of charge exchange recombination for correct description of
ionization balance in the EBIT plasma.Comment: 11 pages, 4 figure
- …