123 research outputs found
Asynchronous Games over Tree Architectures
We consider the task of controlling in a distributed way a Zielonka
asynchronous automaton. Every process of a controller has access to its causal
past to determine the next set of actions it proposes to play. An action can be
played only if every process controlling this action proposes to play it. We
consider reachability objectives: every process should reach its set of final
states. We show that this control problem is decidable for tree architectures,
where every process can communicate with its parent, its children, and with the
environment. The complexity of our algorithm is l-fold exponential with l being
the height of the tree representing the architecture. We show that this is
unavoidable by showing that even for three processes the problem is
EXPTIME-complete, and that it is non-elementary in general
Games on graphs with a public signal monitoring
We study pure Nash equilibria in games on graphs with an imperfect monitoring
based on a public signal. In such games, deviations and players responsible for
those deviations can be hard to detect and track. We propose a generic
epistemic game abstraction, which conveniently allows to represent the
knowledge of the players about these deviations, and give a characterization of
Nash equilibria in terms of winning strategies in the abstraction. We then use
the abstraction to develop algorithms for some payoff functions.Comment: 28 page
EMG/ENG services rendered by clinical neurophysiology technologists in solo practice
CITATION: Bill, P. L. A., et al. 1998. EMG/ENG services rendered by clinical neurophysiology technologists in solo practice. South African Medical Journal, 88(11):1360.The original publication is available at http://www.samj.org.za[No abstract available]Publisherâs versio
- âŠ