

Edinburgh Research Explorer

Determining the Currency of Data

Citation for published version:
Fan, W, Geerts, F & Wijsen, J 2012, 'Determining the Currency of Data' ACM Transactions on Database
Systems, vol 37, no. 4, 25. DOI: 10.1145/2389241.2389244

Digital Object Identifier (DOI):
10.1145/2389241.2389244

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
ACM Transactions on Database Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2389241.2389244
http://www.research.ed.ac.uk/portal/en/publications/determining-the-currency-of-data(1d0682ed-065b-4cc9-99e8-0cb070366a70).html

1

Determining the Currency of Data

WENFEI FAN, University of Edinburgh and Harbin Institute of Technology
FLORIS GEERTS, University of Antwerp
JEF WIJSEN, Université de Mons

Data in real-life databases become obsolete rapidly. One often finds that multiple values of the same entity
reside in a database. While all of these values were once correct, most of them may have become stale and
inaccurate. Worse still, the values often do not carry reliable timestamps. With this comes the need for
studying data currency, to identify the current value of an entity in a database and to answer queries with
the current values, in the absence of reliable timestamps.

This paper investigates the currency of data. (1) We propose a model that specifies partial currency orders
in terms of simple constraints. The model also allows us to express what values are copied from other
data sources, bearing currency orders in those sources, in terms of copy functions defined on correlated
attributes. (2) We study fundamental problems for data currency, to determine whether a specification is
consistent, whether a value is more current than another, and whether a query answer is certain no matter
how partial currency orders are completed. (3) Moreover, we identify several problems associated with copy
functions, to decide whether a copy function imports sufficient current data to answer a query, whether a
copy function can be extended to import necessary current data for a query while respecting the constraints,
and whether it suffices to copy data of a bounded size. (4) We establish upper and lower bounds of these
problems, all matching, for combined complexity and data complexity, and for a variety of query languages.
We also identify special cases that warrant lower complexity.

Categories and Subject Descriptors: H.2.3 [Information Systems]: Database Management—Languages;
F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—Computational Logic

General Terms: Languages, Theory, Design

Additional Key Words and Phrases: Currency, Data quality

1. INTRODUCTION
The quality of data in a real-life database quickly degenerates over time. Indeed, it is
estimated that “2% of records in a customer file become obsolete in one month” [Eck-
erson 2002]. That is, in a database of 500 000 customer records, 10 000 records may go
stale per month, 120 000 records per year, and within two years about 50% of all the

1:2 Wenfei Fan et al.

FN LN address salary status
s1: Mary Smith 2 Small St 50k single
s2: Mary Dupont 10 Elm Ave 50k married
s3: Mary Dupont 6 Main St 80k married
s4: Bob Luth 8 Cowan St 80k married
s5: Robert Luth 8 Drum St 55k married

dname mgrFN mrgLN mgrAddr budget
t1: R&D Mary Smith 2 Small St 6500k
t2: R&D Mary Smith 2 Small St 7000k
t3: R&D Mary Dupont 6 Main St 6000k
t4: R&D Ed Luth 8 Cowan St 6000k

(b) Relation Dept

(a) Relation Emp

Fig. 1. A company database.

records may be obsolete. In light of this, we often find that multiple values of the same
entity reside in a database, which were once correct, i.e., they were true values of the
entity at some time. However, most of them have become obsolete and inaccurate. As
an example from daily life, when one moves to a new address, a bank may retain her
old address, and worse still, credit card bills may still be sent to this old address for
quite some time (see, e.g., [Knowledge Integrity 2003] for more examples). Stale data
is one of the central problems to data quality. It is known that dirty data costs US
businesses 600 billion USD each year [Eckerson 2002], and stale data accounts for a
large part of the losses.
This highlights the need for studying the currency of data, which aims to identify the
current values of entities in a database, and to answer queries using the most current
values only.
The question of data currency would be trivial if all data values carried valid times-
tamps. In practice, however, one often finds that timestamps are unavailable or impre-
cise [Zhang et al. 2010]. Add to this the complication that data values are often copied
or imported from other sources [Berti-Equille et al. 2009; Dong et al. 2010; Dong et al.
2009], which may not support a uniform scheme of timestamps. These make it chal-
lenging to identify the current values.
Not all is lost. It is often possible to deduce currency orders from the semantics of
the data. Moreover, data copied from other sources inherit currency orders from those
sources. Taken together, these may provide sufficient current values of the data to
answer certain queries, as illustrated below.

Example 1.1. Consider two relations of a company shown in Fig. 1. Each Emp tuple
is an employee record with name, address, salary and marital status. A Dept tuple
specifies the name, manager and budget of a department. Records in these relations
may be stale, and do not carry timestamps. By entity identification techniques (see, e.g.,
[Elmagarmid et al. 2007]), we may know that tuples s1, s2 and s3 refer to the same
employee Mary, but s4 and s5 represent a person distinct from Mary. Consider the
following queries posed on these relations.
(1) Query Q1 is to find Mary’s current salary. No timestamps are available for us to tell
which of 50k or 80k is more current. However, we may know that the salary of each
employee in the company does not decrease, as commonly found in the real world. This
yields currency orders s1 ≺salary s3 and s2 ≺salary s3, i.e., s3[salary] is more current than
both s1[salary] and s2[salary]. Hence the answer to Q1 is 80k.

Determining the Currency of Data 1:3

(2) Query Q2 is to find Mary’s current last name. We can no longer answer Q2 as above.
Nonetheless, we may know the following: (a) the marital status can only change from
single to married and from married to divorced; but not from married to single; and
(b) Emp tuples with the most current marital status also contain the most current last
name. Therefore, s1 ≺LN s2 and s1 ≺LN s3, and the answer to Q2 is Dupont.
(3) Query Q3 is to find Mary’s current address. We may know that Emp tuples with the
most current status or salary contain the most current address. Putting this and (1)
above together, we know that the answer to Q3 is “6 Main St”.
(4) Finally, query Q4 is to find the current budget of department R&D. Again no times-
tamps are available for us to evaluate the query. However, we may know the following:
(a) Dept tuples t1 and t2 have copied their mgrAddr values from s1[address] in Emp; sim-
ilarly, t3 has copied from s3, and t4 from s4; and (b) in Dept, tuples with the most
current address also have the most current budget. Taken together, these tell us that
t1 ≺budget t3 and t2 ≺budget t3. Observe that we do not know which budget in t3 or t4
is more current. Nevertheless, in either case the most current budget is 6000k, and
hence it is the answer to Q4. �

These suggest that we give a full treatment of data currency, and answer the follow-
ing questions. How should we specify currency orders on data values in the absence of
timestamps but in the presence of copy relationships? When currency orders are only
partly available, can we decide whether an attribute value is more up-to-date than an-
other? How can we answer a query with only current data in a database? To answer a
query, do we need to import current data from another source, and if so, what to copy?
The ability to answer these questions may provide guidance for practitioners to decide,
e.g., whether the answer to a query is corrupted by stale data, or what copy functions
are needed, among other things.
A model for data currency. To answer these questions, we approach data currency
based on the following.
(1) For each attribute A of a relation D, we assume an (implicit) currency order ≺A on
its tuples such that for tuples t1 and t2 in D that represent the same real-world entity,
t1 ≺A t2 indicates that t2 is more up-to-date than t1 in the A attribute value. Here ≺A
is not a total order since in practice, currency information is only partially available.
Note that for distinct attributes A and B, we may have t1 ≺A t2 and t2 ≺B t1, i.e., there
may be no single tuple that is most up-to-date in all attribute values.
(2) We express additional currency relationships as denial constraints [Bertossi 2006;
Chomicki 2007], which are simple universally quantified FO sentences that have been
used to improve the consistency of data. We show that the same class of constraints
also suffices to express currency semantics commonly found in practice. For instance,
all the currency relations we have seen in Example 1.1 can be expressed as denial
constraints.
(3) We define a copy relationship from relation Dj to Dk in terms of a partial mapping,
referred to as a copy function. It specifies what attribute values in Dj have been
copied from Dk along with their currency orders in Dk. It also assures that correlated
attributes are copied together. As observed in [Berti-Equille et al. 2009; Dong et al.
2010; Dong et al. 2009], copy functions are common in the real world, and can be
automatically discovered.

Putting these together, we consider D = (D1, . . . , Dn), a collection of relations such
that (a) each Dj has currency orders partially defined on its tuples for each attribute,
indicating available currency information; (b) each Dj satisfies a set Σj of denial con-
straints, which expresses currency orders derived from the semantics of the data; and

1:4 Wenfei Fan et al.

(c) for each pair (Dj , Dk) of relations, there are possibly copy functions defined on them,
which import values from one to another.
We study consistent completions Dc

j of Dj , which extend ≺A in Dj to a total order on
all tuples pertaining to the same entity, such that Dc

j satisfies Σj and those constraints
imposed by the copy functions. One can construct from Dc

j the current tuple for each
entity w.r.t. ≺A, which contains the entity’s most current A value for each attribute
A. This yields the current instance of Dc

j consisting of only the current tuples of the
entities in Dj , from which currency orders are removed. We evaluate a query Q on
current instances of relations in D, without worrying about currency orders. We study
certain current answers toQ in D, i.e., tuples that are the answers toQ in all consistent
completions of D.
Reasoning about data currency. We study fundamental problems for data cur-
rency. (a) The consistency problem is to determine, given denial constraints Σj imposed
on each Dj and copy functions between these relations, whether there exist consistent
completions of every Dj , i.e., whether the specification makes sense. (b) The certain
ordering problem is to decide whether a currency order is contained in all consistent
completions. (c) The deterministic current instance problem is to determine whether
the current instance of each relation remains unchanged for all consistent comple-
tions. The ability to answer these questions allows us to determine whether an at-
tribute value is certainly more current than another, and to identify the current value
of an entity. (d) The certain current query answering problem is to decide whether a
tuple t is a certain current answer to a query Q, i.e., it is certainly computed using
current data.
Currency preserving copy functions. It is natural to ask what values should be
copied from one data source to another in order to answer a query. To characterize
this intuition we introduce a notion of currency preservation. Consider data sources
D = (D1, . . . , Dp) and D′ = (D′1, . . . , D

′
q), each consisting of a collection of relations

with denial constraints imposed on them. Consider copy functions ρ from relations in
D′ to those in D. For a query Q posed on D, we say that ρ is currency preserving if
no matter how we extend ρ by copying from D′ more values of those entities in D, the
certain current answers to Q in D remain unchanged. In other words, ρ has already
imported all data values needed for computing certain current answers to Q.
We identify several problems associated with currency-preserving copy functions. (a)
The currency preservation problem is to determine, given Q, ρ, D, D′ and their de-
nial constraints, whether ρ is currency preserving for Q. Intuitively, we want to know
whether we need to extend ρ in order to answer Q. (b) The existence problem is to
determine whether ρ can be extended to be currency preserving for Q. (c) Moreover,
the bounded copying problem is to decide whether there exists such an extension
that imports additional data of a bounded size. Intuitively, we want to find currency-
preserving copy functions that import as few data values as possible.
Complexity results. We provide combined complexity and data complexity of all the
problems stated above. For the combined complexity of the problems that involve
queries, we investigate the impact of various query languages, including conjunctive
queries (CQ), unions of conjunctive queries (UCQ), positive existential first-order
logic (∃FO+) and first-order logic (FO). We establish upper and lower bounds of all
these problems, all matching, ranging over O(1), NP, coNP, Πp

2, Σp2, Πp
3, Σp3, Σp4 and

PSPACE. We find that most of the problems are intractable. In light of this, we also
identify special practical cases with lower complexity, some in PTIME. We also study
the impact of denial constraints. For example, in the absence of denial constraints,

Determining the Currency of Data 1:5

the certain current query answering problem is in PTIME for SP queries (CQ queries
without “join”), but it becomes intractable when denial constraints are present, even
when the constraints are fixed.

This work is a first step towards a systematic study of data currency in the absence
of reliable timestamps but in the presence of copy relationships. The results may help
practitioners decide how to specify data currency, analyze query answers and design
copy functions. We also provide a complete picture of complexity bounds for important
problems associated with data currency and copy functions, which are proved by using
a variety of reductions and by providing (PTIME) algorithms.

Related work. There has been a host of work on temporal databases (see, e.g.,
[Chomicki and Toman 2005; Snodgrass 1999] for surveys). Temporal databases pro-
vide support for valid time, transaction time, or both. They assume the availability
of timestamps, and refer to “now” by means of current-time variables [Clifford et al.
1997; Dyreson et al. 2009]. Dynamic and temporal integrity constraints allow us to
restrict the set of legal database evolutions. Our currency model differs from temporal
data models in several respects. We do not assume explicit timestamps. Nevertheless,
if such timestamps are present, they can be related to currency by means of denial
constraints or partial currency orders. Unlike temporal databases that timestamp en-
tire tuples, our model allows that different values within the same tuple have distinct
currencies. That is, the same tuple can contain an up-to-date value for one attribute,
and an outdated value for another attribute.

Since currency orders are different from temporal orders used in temporal data-
bases, our currency (denial) constraints differ from traditional temporal constraints.
Currency constraints can sometimes be derived from temporal constraints, however.
For example, when salaries are constrained to be non-decreasing, we can express that
the highest salary is the most current one. Also, our copy functions can require certain
attributes to be copied together when these attributes cannot change independently,
as for example expressed by the dynamic functional dependencies in [Vianu 1987].

Closer to this work are [van der Meyden 1997; Koubarakis 1994; 1997; Grohe and
Schwandtner 2009] on querying indefinite data. In [van der Meyden 1997], the eval-
uation of CQ queries is studied on data that is linearly ordered but only provides a
partial order. The problem studied there is similar to (yet different from) certain cur-
rent query answering. An extension of conditional tables [Grahne 1991; Imieliński
and Lipski 1984] is proposed in [Koubarakis 1994] to incorporate indefinite tempo-
ral information, and in that setting, the complexity bounds for FO query evaluation
are provided in [Koubarakis 1997]. Recently the non-emptiness problem for datalog
on linear orders is investigated in [Grohe and Schwandtner 2009]. However, none
of these considers copying data from external sources, or the analyses of certain or-
dering and currency-preserving copy functions. In addition, we answer queries using
current instances of relations, which are normal relations without (currency) order-
ing. This semantics is quite different from its counterparts in previous work. We also
consider denial constraints and copy functions, which are not expressible in CQ or dat-
alog studied in [van der Meyden 1997; Grohe and Schwandtner 2009]. In contrast to
our work, [Koubarakis 1994; 1997] assume explicit timestamps, while we use denial
constraints to specify data currency. To encode denial constraints in extended condi-
tional tables of [Koubarakis 1994; 1997], an exponential blowup is inevitable. Because
of these reasons, the results of [van der Meyden 1997; Koubarakis 1994; 1997; Grohe
and Schwandtner 2009] cannot carry over to our setting, and vice versa.

There has also been a large body of work on the temporal constraint satisfaction
problem (TCSP), which is to find a valuation of temporal variables that satisfies a set

1:6 Wenfei Fan et al.

of temporal constraints (see, e.g., [Bodirsky and Kára 2010; Schwalb and Vila 1998]).
It differs from our consistency problem in that it considers neither completions of cur-
rency orders that satisfy denial constraints, nor copy relationships. Hence the results
for TCSP are not directly applicable to our consistency problem, and vice versa.

Copy relationships between data sources have recently been studied in [Berti-
Equille et al. 2009; Dong et al. 2010; Dong et al. 2009]. The previous work has fo-
cused on automatic discovery of copying dependencies and functions. Copy relation-
ships are also related to data provenance, which studies propagation of annotations in
data transformations and updates (see [Buneman et al. 2008; Cheney et al. 2009] for
recent surveys on data provenance). However, to the best of our knowledge, no previous
work has studied currency-preserving copy functions and their associated problems.

Denial constraints have proved useful in data repairing (see, e.g., [Bertossi 2006;
Chomicki 2007]). We adopt the same class of constraints to specify the currency of data,
so that data currency and consistency could be treated in a uniform logical framework.
Denial constraints can also be automatically discovered, along the same lines as data
dependency profiling (see, e.g., [Fan et al. 2011]).

The study of data currency is also related to research on incomplete information
(see [van der Meyden 1998] for a survey), when missing data concerns data currency.
In contrast to that line of work, we investigate how to decide whether a value is
more current than another, and study the properties of copy functions. We use de-
nial constraints to specify data currency, which are, as remarked earlier, more suc-
cinct than, e.g., C-tables and V-tables for representing incomplete information [Grahne
1991; Imieliński and Lipski 1984]. In addition, we evaluate queries using current in-
stances, a departure from the study of incomplete information.

Certain query answers have been studied in data integration and exchange. In data
integration, for a query Q posed on a global database DG, it is to find the certain
answers to Q over all data sources that are consistent with DG w.r.t. view definitions
(see e.g., [Lenzerini 2002]). In data exchange, it is to find the certain answers to a
query over all target databases generated from data sources via schema mapping
(see [Kolaitis 2005]). By contrast, we consider certain answers to a query over all
completions of currency orders, which satisfy denial constraints and constraints from
copy functions. Certain current query answering is also different from consistent
query answering (see, e.g., [Bertossi 2006; Chomicki 2007]), which is to find certain
answers to a query over all repairs of a database and does not distinguish between
stale and current data in the repairs. Finally, whereas it may be possible to model our
setting as a data exchange scenario with built-in constraints [Deutsch et al. 2008],
our complexity results do not follow gratuitously and a careful analysis of the chase is
required in this setting.

This paper is an extension of earlier work [Fan et al. 2011] by including (a) proofs for
all the theorems; some of the proofs are nontrivial and the techniques are interesting
in their own right; (b) new proofs for stronger lower bounds of the certain ordering
problem and the deterministic current instance problem, in a practical setting when
input specifications are assumed consistent (Theorem 3.4). The previous proofs in [Fan
et al. 2011] heavily relied on the availability of inconsistent input specifications.
Organization. Section 2 presents the data currency model. Section 3 states its related
problems and establishes their complexity bounds. Section 4 introduces the notion
of currency preservation and its fundamental problems, followed by their complexity
analysis in Section 5. Some tractable cases of the problems in connection with data
currency and currency preservation are identified in Section 6. Section 7 summarizes
the main results of the paper.

Determining the Currency of Data 1:7

2. DATA CURRENCY
We introduce a model for specifying data currency. A specification consists of (a) partial
currency orders, (b) denial constraints, and (c) copy functions. We first present these
notions, and then study consistent completions of currency orders. Finally, we show
how queries are answered on current instances derived from these completions.
Data with partial currency orders. A relation schema is specified as R =
(EID, A1, . . . , An), where EID denotes entity id that identifies tuples pertaining to the
same entity, as introduced by Codd [Codd 1979]. Such EID values can be obtained us-
ing entity identification techniques (a.k.a. record linkage, record matching and data
deduplication; see, e.g., [Elmagarmid et al. 2007] for a survey). A finite instance D of
R is referred to as a normal instance of R.
A temporal instance Dt of R is given as (D,≺A1 , . . . ,≺An), where each ≺Ai is a strict
partial order defined on D such that for tuples t1 and t2 in D, t1 ≺Ai t2 implies t1[EID] =
t2[EID]. We call ≺Ai the currency order for attribute Ai. Recall that a strict partial order
is irreflexive and transitive, and therefore asymmetric. Intuitively, if t1 ≺Ai

t2, then t1
and t2 refer to the same entity, and t2 contains a more current Ai-value for that entity
than t1. In other words, t2 is more current than t1 in attribute Ai. A currency order ≺Ai

is empty when no currency information is known for Ai.
A completion of Dt = (D,≺A1

, . . . ,≺An
) is a temporal instance Dc

t = (D,≺cA1
, . . . ,≺cAn

)
of R, such that for each i ∈ [1, n], (1) ≺Ai⊆≺cAi

, and (2) for all t1, t2 ∈ D, t1 and t2
are comparable under ≺cAi

iff t1[EID] = t2[EID]. The latter condition implies that ≺cAi

induces a total order on tuples that refer to the same entity, while tuples representing
distinct entities are not comparable under≺cAi

. We call≺cAi
a completed currency order.

Note that tuples that bear the same EID and carry the same value v in an attribute
Ai are also comparable via ≺cAi

in a completion. When considering the most current
value of Ai (see below), however, it is irrelevant which of these tuples contributes if v
is taken as the latest value of Ai, since these tuples share the same Ai value.
Denial constraints. We use denial constraints [Bertossi 2006; Chomicki 2007] to
specify additional currency information derived from the semantics of data. A denial
constraint ϕ for R is a universally quantified FO sentence of the form:

∀t1, . . . , tk : R
(∧
j∈[1,k]

(t1[EID] = tj [EID] ∧ ψ)→ tu ≺Ai tv
)
,

where u, v ∈ [1, k], each tj is a tuple variable denoting a tuple of R, and ψ is a conjunc-
tion of predicates of the form (1) tj ≺Al

th, i.e., th is more current than tj in attribute
Al; (2) tj [Al] = th[Al] (resp. tj [Al] 6= th[Al]), i.e., tj [Al] and th[Al] are identical (resp. dis-
tinct) values; (3) tj [Al] = c (resp. tj [Al] 6= c), where c is a constant; and (4) possibly
other built-in predicates defined on particular domains. These constraints enrich ≺Ai

.
The constraint is interpreted over completions Dc

t of temporal instances of R. We say
thatDc

t satisfies ϕ, denoted byDc
t |= ϕ, if for all tuples t1, . . . , tk inD that have the same

EID value, if these tuples satisfy the predicates in ψ following the standard semantics
of FO, then tu ≺cAi

tv. The use of EID in ϕ enforces that ϕ is imposed on tuples that
refer to the same entity. We say that Dc

t satisfies a set Σ of denial constraints, denoted
by Dc

t |= Σ, if Dc
t |= ϕ for all ϕ ∈ Σ.

Example 2.1. Recall relations Emp and Dept given in Fig. 1. Denial constraints on
these relations include:

ϕ1: ∀s, t : Emp
(
(s[EID] = t[EID] ∧ s[salary] > t[salary])→ t ≺salary s

)
ϕ2: ∀s, t : Emp

(
(s[EID] = t[EID] ∧ s[status] = “married” ∧ t[status] = “single”) → t ≺LN s

)
ϕ3: ∀s, t : Emp

(
(s[EID] = t[EID] ∧ t ≺salary s)→ t ≺address s

)

1:8 Wenfei Fan et al.

ϕ4: ∀s, t : Dept
(
(s[EID] = t[EID] ∧ t ≺mgrAddr s) → t ≺budget s

)
Here ϕ1 states that when Emp tuples s and t refer to the same employee, if s[salary] >
t[salary], then s is more current than t in attribute salary. Note that ‘>’ denotes the
built-in predicate “greater-than” in the numeric domain of salary, whereas ≺salary is the
currency order for salary. Constraint ϕ2 asserts that if s[status] is married and t[status]
is single, then s is more current than t in LN. Constraint ϕ3 states that if s is more
current than t in salary, then s is also more current than t in address; similarly for ϕ4. �

Copy functions. Consider two temporal instances D(t,1) = (D1,≺A1
, . . . ,≺Ap

) and
D(t,2) = (D2,≺B1 , . . . ,≺Bq) of (possibly distinct) relation schemas R1 and R2, respec-
tively. A copy function ρ of signature R1[~A] ⇐ R2[~B] is a partial mapping from D1 to
D2, where ~A = (A1, . . . , Al) and ~B = (B1, . . . , Bl) denote attributes in R1 and R2, re-
spectively. Here ρ is required to satisfy the copying condition: for each tuple t in D1, if
ρ(t) = s, then t[Ai] = s[Bi] for all i ∈ [1, l].
Intuitively, for tuples t ∈ D1 and s ∈ D2, ρ(t) = s indicates that the values of the
~A attributes of t have been imported from the ~B attributes of tuple s in D2. Here ~A
specifies a list of correlated attributes that should be copied together.
The copy function ρ is called ≺-compatible relative to the currency orders found in
D(t,1) and D(t,2) if for all t1, t2 ∈ D1, for each i ∈ [1, l], if ρ(t1) = s1, ρ(t2) = s2,
t1[EID] = t2[EID] and s1[EID] = s2[EID], then s1 ≺Bi s2 implies t1 ≺Ai t2. Intuitively,
≺-compatibility requires that copy functions preserve currency orders. In other words,
when attribute values are imported from D2 to D1 the currency orders on correspond-
ing tuples defined in D(t,2) are inherited by D(t,1).

Example 2.2. Consider relations Emp and Dept shown in Fig. 1. A copy function
ρ of signature Dept[mgrAddr] ⇐ Emp[address], depicted in Fig. 1 by arrows, is given as
follows: ρ(t1) = s1, ρ(t2) = s1, ρ(t3) = s3 and ρ(t4) = s4. That is, the mgrAddr values of t1
and t2 have both been imported from s1[address], while t3[mgrAddr] and t4[mgrAddr] are
copied from s3[address] and s4[address], respectively. The function satisfies the copying
condition, since t1[mgrAddr] = t2[mgrAddr] = s1[address], t3[mgrAddr] = s3[address], and
t4[mgrAddr] = s4[address].
Suppose that ≺A is empty for each attribute A in Emp or Dept. Then the copy function
ρ is ≺-compatible w.r.t. these temporal instances of Emp and Dept. By contrast, assume
that partial currency orders s1 ≺address s3 on Emp and t3 ≺mgrAddr t1 are given. Then ρ is
not ≺-compatible. Indeed, since s1, s3 pertain to the same person Mary, and t1, t3 to the
same department R&D, the relation s1 ≺address s3 should carry over into t1 ≺mgrAddr t3,
as ρ(t1) = s1 and ρ(t3) = s3. Clearly, t3 ≺mgrAddr t1 and t1 ≺mgrAddr t3 are contradictory. �

Consistent completions of temporal orders. A specification S of data currency
consists of (1) a collection of temporal instances D(t,i) of schema Ri for i ∈ [1, s], (2)
a set Σi of denial constraints imposed on each D(t,i), and (3) a (possibly empty) copy
function ρ(i,j) that imports data from D(t,i) to D(t,j) for i, j ∈ [1, s]. It specifies data
values and entities (by normal instances embedded in D(t,i)), partial currency orders
known for each relation (by D(t,i)), additional currency information derived from the
semantics of the data (Σi), and data that has been copied from one source to another
(ρ(i,j)). These D(t,i)’s may denote different data sources, i.e., they may not necessarily
be in the same database.
A consistent completion Dc of S consists of temporal instances Dc

(t,i) of Ri such that for
all i, j ∈ [1, s],

Determining the Currency of Data 1:9

(1) Dc
(t,i) is a completion of D(t,i),

(2) Dc
(t,i) |= Σi, and

(3) ρ(i,j) is ≺-compatible w.r.t. the completed currency orders found in Dc
(t,i) and Dc

(t,j).

We use Mod(S) to denote the set of all consistent completions of S. We say that S is
consistent if Mod(S) 6= ∅, i.e., there exists at least one consistent completion of S.
Intuitively, if D(t,i) = (Di,≺A1 , . . . ,≺An) is part of a specification and Dc

(t,i) = (Di,≺cA1

, . . . ,≺cAn
) is part of a consistent completion of that specification, then each ≺cAj

ex-
tends ≺Aj to a completed currency order, and the completed orders satisfy the denial
constraints Σi and the constraints imposed by copy functions. Observe that the copy-
ing condition and ≺-compatibility impose constraints on consistent completions. This
is particularly evident when a data source imports data from multiple sources, and
when two data sources copy from each other, directly or indirectly. In addition, these
constraints interact with denial constraints.

Example 2.3. Consider a specification S0 consisting of Emp and Dept of Fig. 1, the
denial constraints ϕ1–ϕ4 given in Example 2.1, and the copy function ρ defined in
Example 2.2. Assume that no currency orders are known for Emp and Dept initially.
A consistent completion Dc

0 of S0 defines (1) s1 ≺A s2 ≺A s3 when A ranges over FN,
LN, address, salary and status for Emp tuples, and (2) t1 ≺B t2 ≺B t4 ≺B t3 when B
ranges over mgrFN, mgrLN, mgrAddr and budget for Dept tuples (assuming that dname is
the EID attribute of Dept). One can verify that Dc

0 satisfies the denial constraints and
the constraints imposed by ρ, and hence, Dc

0 ∈ Mod(S0). No currency order is defined
between any of s1, s2, s3 and any of s4, s5, since they represent different entities.
As another example, suppose that there is a copy function ρ1 that imports budget at-
tribute values of t1 and t3 from the budget attributes of s′1 and s′3 in another source D1,
respectively, where s′1 = t1 and s′3 = t3, but in D1, s′3 ≺budget s

′
1. Then there is no consis-

tent completion in this setting either. Indeed, all completed currency orders of ≺budget

in Dept have to satisfy denial constraints ϕ1, ϕ3 and ϕ4, which enforce t1 ≺budget t3, but
ρ1 is not ≺-compatible with this currency order. This shows the interaction between
denial constraints and currency constraints of copy functions. �

Current instances. In a temporal instance Dt = (D,≺A1 , . . . ,≺An) of R, let E =
{t[EID] | t ∈ D}, and for each entity e ∈ E, let Ie = {t ∈ D | t[EID] = e}. That is, E
contains all EID values in D, and Ie is the set of tuples pertaining to the entity with
EID = e. In a completion Dc

t of Dt, for each attribute A of R, the current A value for
entity e ∈ E is t[A], where t is the greatest (i.e., most current) tuple in the totally
ordered set (Ie,≺cA). The current tuple for entity e ∈ E, denoted by LST(e,Dc

t), is the
tuple te such that for each attribute A of R, te[A] is the current A value for entity e.
Here LST stands for “last” since current tuples are formed by collecting the last values
in totally ordered sets in a completion. Note that LST(e,Dc

t) is most current relative
to the information available in E for entity e; we defer the discussion of incomplete
information to Section 7, when tuples or values may be missing from E.
We use LST(Dc

t) to denote
{
LST(e,Dc

t) | e ∈ E
}

, referred to as the current instance
of Dc

t . Observe that LST(Dc
t) is a normal instance of R, carrying no currency orders.

For any Dc ∈ Mod(S), we define LST(Dc) =
{
LST(Dc

(t,i)) | D
c
(t,i) ∈ Dc

}
, the set of all

current instances.

Example 2.4. Recall the completion Dc
0 of S0 from Example 2.3. We have that

LST(Dc
0) =

{
LST(Emp), LST(Dept)

}
, where LST(Emp) = {s3, s4, s5}, and LST(Dept) =

{t3}. Note that LST(Emp) and LST(Dept) are normal instances.

1:10 Wenfei Fan et al.

Table I. A summary of notations

D a normal instance of a relation schema R
Dt a temporal instance of R with partial currency orders
Dc

t a completion of partial currency orders in Dt

S a specification of data currency
Dc a consistent completion of a specification S

LST(Dc) the current instance of Dc

ρ̄ a collection of copy functions in S
ρ̄e an extension of copy functions ρ̄
Se an extension of specification S by ρ̄e
De an extension of temporal instances by ρ̄e

As another example, suppose that s4 and s5 refer to the same person. Consider an
extension of the currency orders given in Dc

0 by adding s4 ≺A s5 and s5 ≺B s4, where
A ranges over FN, LN, address and status while B is salary. Then the current tuple of this
person is (Robert, Luth, 8 Drum St, 80k, married), in which the first four attributes
are taken from s5 while its salary attribute is taken from s4. �

Certain current answers. Consider a query Q posed on normal instances of
(R1, . . . , Rl), which does not refer to currency orders, where Ri is in specification S
for i ∈ [1, l]. We say that a tuple t is a certain current answer to Q w.r.t. S if t is in⋂

Dc∈Mod(S)

Q
(
LST(Dc)

)
.

That is, t is guaranteed to belong to the answer computed from the current values
no matter how the partial currency orders in S are completed, as long as the denial
constraints and constraints imposed by the copy functions of S are satisfied.

Example 2.5. Recall queries Q1, Q2, Q3 and Q4 from Example 1.1, and specification
S0 from Example 2.3. One can verify that answers to the queries given in Example 1.1
are certain current answers w.r.t. S0, i.e., the answers remain unchanged in LST(Dc)
for all Dc ∈ Mod(S0). �

We summarize notations in Table I, including those given in this section and nota-
tions to be introduced in Section 4.

3. REASONING ABOUT THE CURRENCY OF DATA
We study four problems associated with data currency, and establish their data com-
plexity and combined complexity. For the data complexity, we fix denial constraints and
queries (for CCQA), and study the complexity in terms of varying size of data sources
and copy functions. For the combined complexity we also allow denial constraints and
queries to vary (see, e.g., [Abiteboul et al. 1995] for data and combined complexity).
The consistency of specifications. The first problem is to decide whether a given
specification S makes sense, i.e., whether there exists a consistent completion of S. As
shown in Example 2.3, there exist specifications S such that Mod(S) is empty, because
of the interaction between denial constraints and copy functions, among other things.

CPS: The consistency problem for specifications.
INPUT: A specification S of data currency.
QUESTION: Is Mod(S) nonempty?

The result below tells us the following. (1) The problem is nontrivial: it is Σp2-complete.
It remains intractable even when denial constraints are fixed (data complexity).

Determining the Currency of Data 1:11

(2) Denial constraints are a major factor that makes the problem hard. Indeed, the
complexity bounds are not affected even when no copy functions are defined in S.

THEOREM 3.1. For CPS, (1) the combined complexity is Σp2-complete, and (2) the
data complexity is NP-complete. The upper bounds and lower bounds remain un-
changed even in the absence of copy functions.

PROOF. We show that the combined complexity of deciding whether Mod(S) 6= ∅ for
a specification S is Σp2-complete and its data complexity is NP-complete.
Combined complexity CPS: The Σp2-hardness of CPS is shown by reduction from the
∃∗∀∗3DNF problem, which is known to be Σp2-complete [Stockmeyer 1976]. The
∃∗∀∗3DNF problem is to determine, given a sentence ϕ = ∃X∀Y ψ(X,Y), whether ϕ
is true. Here X = {x1, . . . , xm }, Y = { y1, . . . , yn }, and ψ is a formula C1 ∨ · · · ∨Cr such
that for each i ∈ [1, r], clause Ci is of the form `i1 ∧ `i2 ∧ `i3, where for each j ∈ [1, 3], `ij is
either a variable or the negation of a variable in X ∪ Y .
Given an instance ϕ of ∃∗∀∗3DNF, we define a specification S consisting of a single
fixed schema, a corresponding temporal instance and a single denial constraint. No
copy functions are defined. We then show that ϕ is true iff Mod(S) is non-empty. More
specifically, the specification S is defined as follows.
(1) Temporal instance. A (fixed) relation schema RV (EID, V, v, A1, A2, A3, B) is defined
in S. Its temporal instance IV consists of three parts: (a) IX = { ti, t′i | i ∈ [1,m] }, where
ti = (eid, xi, 1,#,#,#,#), # is a distinct symbol (a placeholder), and t′i is the same as
ti except t′i[v] = 0; (b) IY = { sj , s′j | j ∈ [1, n] }, where sj = (eid, yj , 1,#,#,#,#), and
similarly for s′j except s′j [v] = 0; and (c) I∨ consists of 8 tuples cl encoding disjunction
such that cl[EID] = eid, cl[Ap] ranges over 0 and 1 for p ∈ [1, 3], cl[B] = cl[A1] ∨ cl[A2] ∨
cl[A3], and cl[V] = cl[v] = #. The currency order for V is such that for any tuples
t, s ∈ IV , t ≺V s if (a) t[V] = xi, s[V] = xj and i < j, (b) t[V] = yi, s[V] = yj and
i < j, (c) t[V] = xi and s[V] = yj when i ∈ [1,m] and j ∈ [1, n], or (d) t[V] = #
but s[v] 6= #. The initial partial currency orders for the other attributes are empty.
Intuitively, completions IcV of IV are (a) to encode truth assignments µ for X such that
for any ti, t′i ∈ IcX , if ti[V] = t′i[V] = xi and t′i[v] ≺v ti[v], then µ(xi) takes the value of
ti[v] (either 0 or 1); (b) to enumerate all truth assignments of Y , i.e., for each j ∈ [1, n],
sj and s′j denote the truth values of yj (both 0 and 1); and (c) to conduct the disjunction
computation with the Ap and B attributes of the tuples in I∨, which, as will be seen
shortly, is needed to encode ψ.
(2) Denial constraints. We define a denial constraint φ to encode ϕ = ∃X∀Y ψ(X,Y)
(the equality of EID is omitted as all tuples of IcV refer to the same entity):

φ = ∀t1, t′1, . . . , tm, t′m, ∀s1, . . . , sn, ∀c1, . . . , cr
(
(
∧

i∈[1,m]

ξi ∧
∧

j∈[1,n]

χj ∧
∧

l∈[1,r]

ωl) → t1 ≺V t1
)

Here for each i ∈ [1,m], ξi is ti[V] = t′i[V] = xi ∧ t′i ≺v ti, i.e., ti[v] indicates the truth
value of xi in IcX . For each j ∈ [1, n], χj is sj [V] = yj , indicating a truth value of yi. For
each l ∈ [1, r], ωl encodes the negation ¬Cl of the conjunctive clauseCl = `l1∧`l2∧`l3. More
specifically, ωl is of the form (cl[B] = 1) ∧

∧
p∈[1,3] η

l
p, where ηlp is one of the following

four cases: (a) cl[Ap] 6= ti[v] if `lp is xi, (b) cl[Ap] = ti[v] if `lp is x̄i, (c) cl[Ap] 6= sj [v] if `lp is
yj , and (d) cl[Ap] = sj [v] if `lp is ȳj . Obviously, ψ is encoded in φ as (

∧
i∈[1,m]

ξi ∧
∧

j∈[1,n]

χj →

1:12 Wenfei Fan et al.∨
l∈[1,r]

Cl). While ξi picks the latest value of xi in IcX as its truth value, χj checks all

possible truth values of yj as it imposes no constraints on sj [v].
We next verify that Mod(S) 6= ∅ iff ϕ is true.
⇒ Suppose that Mod(S) 6= ∅. Then there exists an IcV ∈ Mod(S) with a total order
≺cv. Define a truth assignment µX for X such that for each i ∈ [1,m], µX(xi) = 1 if
ti[V] = t′i[V] = xi, ti[v] = 1, t′i[v] = 0 and t′i ≺cv ti; and µX(xi) = 0 if ti ≺cv t′i. Since
IcV |= φ, one can verify that µX satisfies ∀Y ψ, and hence, ϕ is true.
⇐ Conversely, suppose that ϕ is true. Let µX be a satisfying truth assignment for X.

We define IcV such that for each i ∈ [1,m] and ti, t′i ∈ IcV with ti[V] = t′i[V] = xi, ti[v] = 1
and t′i[v] = 0, if µX(xi) = 1 then t′i ≺cv ti, and ti ≺cv t′i otherwise. The other currency
orders can be completed arbitrarily. One can verify that IcV |= φ since ϕ is true. As a
result, IcV is in Mod(S). 2

Data complexity CPS: We show that CPS is NP-hard by reduction from the Between-
ness problem, which is known to be NP-complete (cf. [Garey and Johnson 1979]). The
Betweenness problem is to decide whether for given sets A and B = {(ai, aj , ak) |
ai, aj , ak ∈ A3}, there exists a bijection π : A → {1, . . . , |A|} such that for each
(ai, aj , ak) ∈ B, either π(ai) < π(aj) < π(ak) or π(ak) < π(aj) < π(ai) holds.
We show that CPS is already NP-hard when S consists of a single temporal database
instance of a fixed schema equipped with a fixed set of denial constraints. No copy
functions are specified in S.
(1) Temporal instance. The specification S consists of a single 5-ary relation
R(EID,TID, A, P,O). The corresponding temporal instance I is used to encode the
set of triples B, as follows. For each (ai, aj , ak) ∈ B we add six tuples tuples to
I: (eid, tid, ai, 1, 1), (eid, tid, aj , 2, 1) and (eid, tid, ak, 3, 1), and similarly, (eid, tid, ai, 3, 2),
(eid, tid, aj , 2, 2) and (eid, tid, ak, 1, 2). Note that all tuples in I pertain to the same en-
tity. By contrast, tid serves as a unique identifier for the triples in B. Furthermore, the
O-attribute value of these tuples distinguishes between the two allowed orderings of ai,
aj and ak. That is, the three tuples with O-attribute set to 1 correspond to ai < aj < ak,
whereas the tuples with O-attribute set to 2 correspond to ak < aj < ai. Finally, the
attribute P indicates the position of the elements in a triple within these orderings
(i.e., position 1, 2, or 3). We further add an additional tuple t# = (eid,#,#,#,#) to I,
where # is a symbol not used anywhere else. Intuitively, this special tuple serves as
a separator between the two alternative orderings of triples in B. More specifically, in
a completion Ic of I, tuples that are more recent than t# relative to ≺cA represent the
chosen ordering of triples. Note that I consists of at most O(|A|3) tuples. The initial
partial currency orders in I are empty.
(2) Denial constraints. We define a fixed number of denial constraints, which together
assure that in any completion Ic of I, only one of the two alternative orderings for each
triple in B is selected. More specifically, we include the following denial constraints
(omitting the condition that all the involved tuples refer to same entity):

σ1 = ∀t1, t2, s : R
(
(t1[TID] = t2[TID]∧t1[O] = t2[O]∧s[A] = #∧t1 ≺A s ≺A t2)→ t1 ≺A t1

)
.

That is, σ1 enforces that in a completion Ic of I, all three tuples corresponding to the
same alternative ordering of a triple in B are either more or less current than t#
relative to ≺cA. We further enforce that in Ic, only one of the two alternative orderings
is more current than t# relative to ≺cA. This is achieved by including two constraints,
denoted by σ2 and σ3, that express that no pair of tuples t1 and t2 can exist such that

Determining the Currency of Data 1:13

(i) t1 and t2 refer to the same triple but correspond to different orderings (i.e., different
O-attribute value); and (ii) both t1 and t2 are more (resp. less) current than t# relative
to ≺cA. In addition, using a constraint σ4, we enforce that for those tuples that belong
to the same triple and the same ordering, if they are more recent than t# then they
also must be ordered correctly, i.e., if t1[P] < t2[P] then also t1 ≺cA t2 in completions
of I. Finally, we include a constraint σ5 that enforces tuples in the selected ordering
of triples (i.e., those that are more current than t#) and that refer to the same value
(element) in A, to be ordered consecutively in completions of I. It is readily verified
that the constraints σ2, σ3, σ4 and σ5 can be expressed as denial constraints, similar to
σ1. This concludes the definition of S.
We claim that Mod(S) is non-empty iff there exists a bijection π : A→ {1, . . . , |A|} such
that for each (ai, aj , ak) ∈ B, either π(ai) < π(aj) < π(ak) or π(ak) < π(aj) < π(ai).
⇒ Suppose that Mod(S) is non-empty. Let Ic be a consistent completion of I with ≺cA

the total order on tuples in I relative to the A-attribute. Let a ∈ A and let I(a) be the
set of tuples t in I such that (i) t[A] = a; and (ii) t# ≺cA t. Observe that by σ5 all such
tuples appear consecutively in ≺cA. As a consequence, we can order the sets I(a) such
that I(a) < I(a′) for a, a′ ∈ A iff all tuples in I(a) come before all tuples in I(a′) relative
to ≺cA. We say that I(a) is the ith block in I if it is the ith element in this order. We
define the bijection π : A → {1, . . . , |A|} by letting π(a) = i, where I(a) is the ith block.
Since Ic ∈ Mod(S) it follows from σ1–σ4 that π satisfies the desired condition.
⇐ Suppose that there exists a valid bijection π : A→ {1, . . . , |A|}. We define a comple-

tion Ic of I in which the total order≺cA is defined as follows. For each (ai, aj , ak) ∈ B, we
first identify which of the two options is selected by π. That is, if π(ai) < π(aj) < π(ak)
then ≺cA puts after t# all three tuples that correspond to the triple (ai, aj , ak) (identi-
fied by tid) and have their O-attribute set to 1. The other three tuples that correspond
to (ai, aj , ak) and have O-attribute set 2 are ordered before t# by ≺cA. As a consequence,
Ic already satisfies σ1–σ3. Furthermore, ≺cA also orders the three tuples in the appro-
priate order (using their P -attribute values) in order to satisfy σ4. Finally, ≺cA groups
tuples that belong to same block I(a) (as previously defined) consecutively in some ar-
bitrary order, hereby ensuring that Ic also satisfies σ5. We complete ≺cA in an arbitrary
way on the remaining tuples in I to get a total order. Clearly, Ic satisfies all constraints
and hence Mod(S) is non-empty. 2

Upper bound CPS: We next describe a decision algorithm for CPS that is in Σp2 (com-
bined complexity) and in NP (data complexity). Let S be a specification that consists
of a collection of temporal instances D(t,i) of schema Ri for i ∈ [1, s], with (1) a set Σi
of denial constraints imposed on each D(t,i), and (2) a copy function ρ(i,j) from D(t,j) to
D(t,i) for each pair of i, j ∈ [1, s]. The algorithm simply guesses a completion Dc and
verifies whether it belongs to Mod(S), as follows:

(1) For each temporal instance D(t,i) and attributes Aj in Ri, guess a binary relation
≺c(i,j) over the tuples in D(t,i).

(2) For each i ∈ [1, s]:
(a) check whether ≺i,j⊆≺c(i,j) and whether for each entity eid that occurs in D(t,i),

the binary relation ≺c(i,j) is a total order on all tuples t ∈ D(t,i) with t[EID] = eid.
if not, reject the guess; otherwise continue;

(b) check whether Dc
(t,i) |= Σi; if not, reject the guess; otherwise continue.

(3) For each i, j ∈ [1, s]:
(a) check whether ρ(i,j) is compatible with (Dc

(t,i),Σi) and (Dc
(t,j),Σj). If not, reject

the guess; otherwise return “yes”.

1:14 Wenfei Fan et al.

Based on the algorithm, we present an analysis of the complexity of CPS. We start
with the combined complexity. It suffices to show that steps 2 and 3 can be done us-
ing an NP or coNP oracle. Clearly, step 2(a) is in PTIME: it simply verifies whether
the guessed binary relations ≺c(i,j) are total orders that extend the initial partial or-
ders. By contrast, step 2(b) consists of the validation of the denial constraints on each
competed temporal instance, i.e., it checks whether Dc

(t,i) |= Σi for each i ∈ [1, s]. It is
readily verified that this can done in coNP by checking whether one of the conjunctive
queries, obtained by negating the denial constraints, is satisfied. Finally, step 3 is also
in PTIME. Indeed, it simply verifies whether the copy functions are compatible with
respect to guessed completions. Hence, the combined complexity of the algorithm is
Σp2 = NPNP. For the data complexity, it is readily verified that step 2(b) is in PTIME.
Indeed, the data complexity of evaluating denial constraints is in PTIME. Hence, the
data complexity of the algorithm is in NP.

Certain currency orders. The next question studies whether a given currency order
is contained in all consistent completions of a specification. Given two temporal in-
stances D(t,1) = (D,≺A1 , . . . ,≺An) and D(t,2) = (D,≺′A1

, . . . ,≺′An
) of the same schema

R, we say that D(t,1) is contained in D(t,2), denoted by D(t,1) ⊆ D(t,2), if ≺Aj
⊆≺′Aj

for
all j ∈ [1, n].

Consider a specification S in which there is a temporal instance Dt = (D,≺A1

, . . . ,≺An
) of schema R. A currency order for Dt is a temporal instance Ot = (D,≺′A1

, . . . ,≺′An
) of R. Observe that Ot does not necessarily contain Dt.

COP: The certain ordering problem.
INPUT: A specification S in which Dt is a temporal instance, and a currency

order Ot for Dt.
QUESTION: Is it the case that Ot ⊆ Dc

t for all Dc ∈ Mod(S)? Here Dc
t is the

completion of Dt in Dc.

Example 3.2. Consider specification S0 of Example 2.3. We want to know whether
s1 ≺salary s3 is assured by every completion Dc ∈ Mod(S0). To this end we construct
a currency order Ot = (Emp, ≺FN, ≺LN, ≺address, ≺salary, ≺status), in which s1 ≺salary s3 is
in ≺salary, but the partial orders for all other attributes are empty. One can verify that
Ot is indeed a certain currency order, as assured by denial constraint ϕ1. Similarly,
one can define a currency order O′t to check whether t3 ≺mgrFN t4 is entailed by all
Dc ∈ Mod(S0). One can readily verify that it is not the case. Indeed, there exists a
Dc

1 ∈ Mod(S0), such that t4 ≺mgrFN t3 is given in Dc
1. �

We study COP together with the certain current instance problem stated below.
Certain current instances. Given a specification S of data currency, one naturally
wants to know whether every consistent completion of S yields the same current in-
stance. We say that a specification S of data currency is deterministic for current in-
stances if for all consistent completions Dc

1, Dc
2 ∈ Mod(S), LST(Dc

1) = LST(Dc
2). This

definition naturally carries over to a particular relation schema R: specification S is
said to be deterministic for current R instances if for all consistent completions Dc

1,
Dc

2 ∈ Mod(S), the instance of R in LST(Dc
1) is equal to the instance of R in LST(Dc

2).

DCIP: The deterministic current instance problem
INPUT: A specification S and a relation schema R defined in S.
QUESTION: Is S deterministic for current R instances?

Determining the Currency of Data 1:15

Example 3.3. The specification S0 of Example 2.3 is deterministic for current Emp
instances. Indeed, for all Dc ∈ Mod(S0), if Dc

Emp is the completion of the Emp instance
in Dc, then LST(Dc

Emp) = {s3, s4, s5}. �

Observe that when the input specification S in COP and DCIP is inconsistent, the
conditions stated in these problems are trivially satisfied since Mod(S) = ∅. The fol-
lowing result tells us that both COP and DCIP are beyond reach in practice.

THEOREM 3.4. For both COP and DCIP, (1) the combined complexity is Πp
2-complete,

and (2) the data complexity is coNP-complete. The complexity bounds remain unchanged
when no copy functions are present. In addition, the lower bounds hold even when the
input specification is assumed to be consistent.

PROOF. It suffices to show that COP and DCIP are Πp
2-hard (combined complexity)

and coNP-hard (data complexity) when the given specification is consistent and when
copy functions are absent, and that they are in Πp

2 (combined complexity) and coNP
(data complexity) when the given specification is not necessarily consistent and when
copy functions may be present.
Lower bounds COP (combined complexity): We show that COP is Πp

2-hard by reduction
from the complement of the ∃∗∀∗3DNF problem. Given an instance ϕ = ∃X∀Y ψ(X,Y)
of the ∃∗∀∗3DNF problem, we define a consistent specification S consisting of a fixed
schema RV , a corresponding temporal instance DV , a single denial constraint but no
copy functions, as well as a currency order Ot for DV . We show that ϕ is false iff
Ot ⊆ Dc

V for every Dc
V ∈ Mod(S). We assume w.l.o.g. that X = {x1, . . . , xm }, Y =

{ y1, . . . , yn }, and ψ is a formula C1 ∨ · · · ∨ Cr, as in the proof of Theorem 3.1.
More specifically, we define S and Ot as follows.

(1) Temporal instance. The specification S contains the same relation schema
RV (EID, V, v, A1, A2, A3, B) as defined in the proof of Theorem 3.1. Its temporal in-
stance DV is the same as IV defined there, except that it includes an additional tuple
t$ = (eid, $, $, $, $, $, $), where $ is a distinct symbol. Intuitively, IX , IY and I∨ are used
to encode truth assignments µX for X, enumerate all truth assignments for Y , and to
code disjunction, respectively, as in the proof of Theorem 3.1. The tuple t$ is used to
define the currency order Ot.
(2) Currency order Ot. We define Ot such that for attribute C ranging over
V, v,A1, A2, A3, B and for each tuple t ∈ IV , t ≺C t$. That is, it requires that t$ is
the current instance LST(Dc

V) for all consistent completions Dc
V of DV .

(3) Denial constraints. We define a denial constraint σ to encode ϕ = ∃X∀Y ψ(X,Y)
(omitting the EID attributes):

σ = ∀t1, t′1, . . . , tm, t′m, s1, . . . , sn, c1, . . . , cr
(
τ ∧ (

∧
i∈[1,m]

ξi ∧
∧

j∈[1,n]

χj ∧
∧

l∈[1,r]

ωl) → t1 ≺V t1
)

Here σ is an extension of its counterpart φ defined in the proof of Theorem 3.1. It
encodes ψ as τ →

(∧
i∈[1,m]

ξi ∧
∧

j∈[1,n]

χj →
∨

l∈[1,r]

¬ωl
)
, where ξi, χj and ωl are the same

as defined for φ. The additional precondition τ simply checks whether the new tuple
t$ is not more current than all tuples ti, t′i, sj , cl in all attributes. That is, t$ ≺C t for
some t of ti, t′i, sj or cl and for attribute C of V, v,A1, A2, A3 and B, where i ∈ [1,m],
j ∈ [1,m], and l ∈ [1, r]. This can be expressed as a conjunction of atomic formulas
by leveraging I∨, which encodes disjunction, and by introducing additional universally
quantified variables ranging over tuples in I∨.

1:16 Wenfei Fan et al.

One can readily verify that S is consistent. Indeed, for any completion Dc
V such that

LST(Dc
V) = t$, we have that Dc

V |= σ. Also observe that no copy functions are defined.
We next verify that ϕ is false iff Ot ⊆ DC

V for all Dc
V ∈ Mod(S).

⇒ Suppose that ϕ is false. As argued in the proof of Theorem 3.1, for any completion
IcV of IV , IcV 6|= φ, where IV ⊂ DV . Hence no consistent completion DC

V of DV can
satisfy τ , since otherwise Dc

V 6|= σ. Because τ encodes the converse of Ot, Ot ⊂ DC
V for

all Dc
V |= σ.

⇐ Conversely, suppose that ϕ is true. Then one can define a consistent completion
Dc
V of DV such that LST(Dc

V) 6= t$ and moreover, Dc
V |= σ. Indeed, in such a Dc

V , σ is
equivalent to φ defined in the proof of Theorem 3.1, and as argued there, Dc

V |= φ when
ϕ is true. Hence there exists a Dc

V ∈ Mod(S) such that Ot 6⊂ DC
V . 2

Lower bounds DCIP (combined complexity): From the proof for COP above it follows im-
mediately that DCIP is Πp

2-hard for consistent specifications, in the absence of copy
functions. Indeed, the currency order Ot given there defines the current instance of
RV , and hence, the proof carries over to DCIP. 2

Lower bounds COP (data complexity): We show that COP is coNP-hard by reduction
from the complement of the 3SAT problem, which is known to be NP-complete. An
instance of 3SAT is a logic formula ψ = C1 ∧ · · · ∧Cr defined on propositional variables
X = {x1, . . . , xm }, where for each i ∈ [1, r], clause Ci is of the form `i1 ∨ `i2 ∨ `i3, and
for each j ∈ [1, 3], literal `ij is either a variable or the negation of a variable in X. The
problem is to decide whether there exists a truth assignment for X that satisfies ψ. It
is known that 3SAT is NP-complete (cf. [Papadimitriou 1994]). We define a consistent
specification S consisting of a fixed schema RC , a corresponding temporal instance IC ,
a set Σ of fixed denial constraints but no copy functions, as well as a currency order Ot
for IC . We show that ϕ is false iff Ot ⊆ IcC for every IcC ∈ Mod(S).

More specifically, we define S and Ot as follows.
(1) Temporal instance. The specification S contains a single relation schema
RC(EID, C, L, S, V). Its temporal instance IC consists of the following tuples: For each
i ∈ [1, r], j ∈ [1, 3], IC contains the tuple (eid, i, j,+, xi) if xi is the jth literal in Ci;
and (eid, i, j,−, xi) if x̄i is the jth literal in Ci. Furthermore, IC contains a special tuple
t# = (eid,#,#,#,#), where # is a special symbol not appearing anywhere else in IC .
(2) Denial constraints. We define a set Σ of fixed denial constraints that together imply
(a) tuples that are more current in one attribute are more current in all attributes;
(b) if there exists a tuple t such that t# ≺C t, then for every i ∈ [1, r] there exists a
tuple ti = (eid, i,±, x) such that t# ≺C ti, where ± ∈ {+,−} and x ∈ X; and finally,
(c) only one of the tuples (eid, i, j,+, xi) or (eid, i, j,−, xi) can be more current than t#.
Intuitively, these constraints imply that the most current tuple is a tuple from IC and
that either t# is the current tuple, or if not, every clause has at least one of its literals
appear after t# and in these tuples either x or x̄ appears, for x ∈ X, but not both. No
copy functions are specified.
(3) Currency order Ot. We define Ot such that t# is more recent than any other tuple
in IC .
One can readily verify that S is consistent. Indeed, it suffices to take a completion that
makes t# the most current tuple. We next verify that ϕ is false iff Ot ⊆ IcC for all
IcC ∈ Mod(S).
⇒ Suppose that ϕ is true and let µ be a satisfying truth assignment for ϕ. Define ≺cC

such that for each j ∈ [1, r] exactly one tuple (eid, j,±, x) comes after t# in which the

Determining the Currency of Data 1:17

literal is encoded by ± and x evaluates to true under µ. The currency orders on the
other attributes are the same as ≺cC . This clearly results in a consistent completion in
Mod(S) such that its most current tuple is different from t#. Hence, Ot 6⊆ IcC for all
IcC ∈ Mod(S).
⇐ Conversely, suppose that S has a consistent completion IcC in which t# is not the

more current tuple. This implies that some tuples corresponding to the clauses and
literals in ϕ are more current than t#. In particular, the denial constraints imply that
the following mapping µ is well-defined: µ(xi) = 1 in case (eid, j, i,+, xi) is more current
than t# for some j ∈ C, and µ(xi) = 0 in case (eid, j, i,−, xi) is more current than t# for
some j ∈ C; furthermore, since all clauses contribute such a tuple, µ can be extended
to a satisfying truth assignment for ϕ. 2

Lower bounds DCIP (data complexity): The coNP-hardness is established in precisely
way as in the previous proof. Indeed, observe that a unique current instance exists if
Ot ⊆ IcC for all IcC ∈ Mod(S), where Ot and S are as in the previous proof. 2

Upper bounds COP: We provide a decision algorithm for COP that is in Πp
2 (combined

complexity) and in coNP (data complexity). In fact, we provide an Σp2 (resp. NP) algo-
rithm for the complement problem: Given a specification S and currency order Ot for
Dt, it checks whether there exists a Dc ∈ Mod(S) such that Ot 6⊆ (Dc

t ,≺c1, . . . ,≺cn),
where the latter is the consistent completion for Dt in Dc. This problem can be de-
cided by a minor variation of the algorithm for CPS given in the proof of Theorem 3.1.
Indeed, an additional PTIME step is required that checks whether the guessed com-
pletion in Step 1 does not contain the given currency order Ot. Recall also that COP is
trivially true when Mod(S) = ∅. It is readily verified that in this case, the algorithm
will never return “yes”. The algorithm thus works correctly even when S is not con-
sistent. The upper bounds thus follow from the analysis of the algorithm given in the
proof of Theorem 3.1. 2

Upper bounds DCIP: We provide a Σp2 (combined complexity) and NP (data complexity)
algorithm that decides the complement problem. Let S be the given specification, the
algorithm returns “yes” if S is not deterministic for current instances. The algorithm
is as follows:

(1) Guess two completions Dc
1 and Dc

2 of S.
(2) Verify the following:

(a) Dc
1 and Dc

2 are both in Mod(S); and
(b) LST(Dc

1) 6= LST(D2
c).

The correctness of the algorithm is clear, and for the same reason as in the algorithm
for COP, it works even when S is not consistent. Observe that for combined complexity,
Step 2(a) is in NP since it involves verifying denial constraints, and Step 2(b) is in
PTIME. Hence, the overall combined complexity of the algorithm is in Σp2. For data
complexity, Step 2(a) only requires PTIME, bringing the data complexity to NP. Since
the algorithm decides the complement of DCIP, the Πp

2 upper bounds follow.

Query answering. Given a query Q, we want to know whether a tuple t is in
Q
(
LST(Dc)

)
for all Dc ∈ Mod(S).

CCQA(LQ): The certain current query answering problem.
INPUT: A specification S, a tuple t and a query Q ∈ LQ.
QUESTION: Is t a certain current answer to Q w.r.t. S?

1:18 Wenfei Fan et al.

We note that, similarly as for COP and DCIP, the certain current query answer problem
is vacuously true when inconsistent specifications S are given as input.
We study CCQA(LQ) when LQ ranges over the following query languages (see,
e.g., [Abiteboul et al. 1995] for the details):
— CQ, the class of conjunctive queries built up from relation atoms and equality (=),

by closing under conjunction ∧ and existential quantification ∃;
— UCQ, unions of conjunctive queries of the form Q1∪· · ·∪Qk, where for each i ∈ [1, k],
Qi is in CQ;

— ∃FO+, first-order logic (FO) queries built from atomic formulas, by closing under ∧,
disjunction ∨ and ∃; and

— FO queries built from atomic formulas using ∧, ∨, negation ¬, ∃ and universal quan-
tification ∀.

While different query languages have no impact on the data complexity of CCQA(LQ),
we next show the following: (1) disjunctions in UCQ and ∃FO+do not incur extra com-
plexity to CCQA (indeed, CCQA has the same complexity for CQ as for UCQ and ∃FO+);
(2) the presence of negation in FO complicates the analysis; and (3) copy functions have
no impact on the complexity bounds.

THEOREM 3.5. The combined complexity of CCQA(LQ) is
(1) Πp

2-complete when LQ is CQ, UCQ or ∃FO+, and
(2) PSPACE-complete when LQ is FO.

The data complexity is coNP-complete when LQ ∈ {CQ,UCQ,∃FO+,FO}. These complex-
ity bounds remain unchanged in the absence of copy functions. In addition, the lower
bounds hold even when the input specification is assumed to be consistent.

PROOF. It suffices to show the lower bounds when copy functions are absent from
the specification and when the specification is consistent. For the upper bounds, how-
ever, copy functions may be present and specifications may be inconsistent.
Combined complexity CCQA for CQ, UCQ and ∃FO+: We show that CCQA(LQ) is Πp

2-
hard by reduction from the ∀∗∃∗3CNF problem, which is known to be Πp

2-complete
[Stockmeyer 1976]. The ∀∗∃∗3CNF problem is to decide, given a sentence ϕ = ∀X∃Y ψ,
whether ϕ is true. Here X = {x1, . . . , xm }, Y = { y1, . . . , yn }, and ψ is an instance
C1 ∧ · · · ∧ Cr of 3SAT, as in the proof of Theorem 3.4.
Given ϕ, we define a specification S of data currency, a query Q in CQ and a tuple t.
We show that ϕ is true iff for each consistent completion Dc of S, t ∈ Q

(
LST(Dc)

)
. In

S, neither denial constraints nor copy functions are defined.
(1) Temporal instances. The specification S consists of six relation schemas
RX(EID, Ax), R∨ = (EID, A,A1, A2), R∧(EID, A,A1, A2), R¬ = (EID, A, Ā), R01 = (EID, A),
and Rb = (EID, B). The corresponding instances IX , I∨, I∧, I¬, I01 and Ib are as shown
in Fig. 2. Here IX is a temporal instance of RX consisting of two tuples (i, 0) and (i, 1)
for each i ∈ [1,m]. Intuitively, each consistent completion IcX of IX encodes a truth as-
signment µX for X such that for each xi ∈ X, µX(xi) = 1 iff (i, 0) ≺cAx

(i, 1) for tuples
(i, 0) and (i, 1) in IX , where ≺cAx

is the completion of the currency order ≺Ax
in IcX . The

instances I∨, I∧ and I¬ encode disjunction, conjunction and negation, respectively. The
instance I01 encodes the Boolean domain and Ib keeps a flag indicating whether ϕ is
satisfiable. The initial partial currency orders in all these instances are empty. Also
note that in all, except for IX , each entity has a single tuple associated with it. Hence,
completions of these instances coincide with the instances themselves and so do their
corresponding current instances.

Determining the Currency of Data 1:19

IX =

EID Ax

1 1
1 0
...

...
m 1
m 0

I∨ =

EID A A1 A2

eid1 0 0 0
eid2 1 0 1
eid3 1 1 0
eid4 1 1 1

I¬ =
EID A Ā
eid5 0 1
eid6 1 0

I01 =
EID A
eid7 1
eid8 0

Ib =
EID A
eid9 1

I∧ =

EID A A1 A2

eid10 0 0 0
eid11 0 0 1
eid12 0 1 0
eid13 1 1 1

Fig. 2. Temporal instances used in the lower bound proof of Theorem 3.5(1).

(2) Query. We define a CQ query Q as follows (omitting the EID-attributes):

Q(w) = ∃~x ~y
(
QX(~x) ∧QY (~y) ∧ Qψ(~x, ~y, w) ∧ Rb(w)

)
.

Here QX(~x) is
∧
i∈[1,m]RX(i, xi) and it selects truth assignments µX from completions

IcX of IX . The sub-query QY (~y) simply generates all truth assignments µY for Y using
n Cartesian products of I01. Finally, Qψ(~x, ~y, w) is a CQ query that encodes the truth
value of ψ(X,Y) for a given truth assignment µX for X and µY for Y , such that w = 1
if ψ is satisfied by µX and µY , and w = 0 otherwise. The query Qψ can be expressed in
CQ in terms of R∨, R∧ and R¬. We illustrate the construction of Qψ by means of the
following example. Consider the formula ψ = C1 ∧ C2, where C1 = x1 ∨ y1 ∨ ȳ2 and
C2 = x2 ∨ x̄3 ∨ y3. Then, for the clause C1 we consider the CQ query (omitting the EID
attributes) Q1(x1, y1, y2, w1) = ∃w′1, y′2

(
I∨(w′1, x1, y1) ∧ I∨(w1, w

′
1, y
′
2) ∧ I¬(y2, y

′
2)
)
. The

query Q2(x2, x3, y3, w2) for C2 is constructed similarly. The query Qψ is then given by
Qψ(x1, x2, x3, y1, y2, y3, w) = ∃w1, w2

(
Q1(x1, y1, y2, w1)∧Q2(x2, x3, y3, w2)∧I∧(w,w1, w2)

)
.

It can be readily verified that Qψ has the desired semantics.
Hence, given a consistent specification Dc of S, query Q returns {(1)} iff for the

truth assignments µX for X encoded by the completion IcX in Dc, there exists a truth
assignment µY for Y such that ψ is satisfied.
(3) Tuple t. We simply define t to be (1), the constant value in Ib.

We next verify the correctness of the reduction, i.e., we show that ϕ is true iff for all
consistent completions Dc ∈ Mod(S), t ∈ Q

(
LST(Dc)

)
.

⇒ Suppose that ϕ is true. Then for each truth assignment µX for X, there exists a
truth assignment µY for Y such that ψ is satisfied. Hence for each consistent comple-
tion of Dc in Mod(S), i.e., for each truth assignment µX for X encoded by the com-
pletion IcX of IX in Dc, there exists ~y such that Q(w) returns {(1)}. In other words,
t ∈ Q

(
LST(Dc)

)
, i.e., t is a certain current answer to Q.

⇐ Suppose that ϕ is false. Then there exists a truth assignment µX for X such that
for all truth assignments for Y , ψ is not satisfied. Define a completion Dc of S such
that for each xi ∈ X, (i, 0) ≺cAx

(i, 1) iff µX(xi) = 1 for tuples (i, 0) and (i, 1) in IcX ,
where IcX is the completion of IX in Dc. Clearly, Dc is a consistent completion of S, and
moreover, that Q

(
LST(Dc)

)
is empty, i.e., t 6∈ Q

(
LST(Dc)

)
. That is, t is not a certain

current answer to Q. 2

Combined complexity CCQA for FO:. We next show that CCQA(LQ) is PSPACE-hard by
reduction from Q3SAT, which is known to be PSPACE-complete (cf. [Papadimitriou
1994]). Given a sentence ϕ = P1X1 . . . PmXmψ, Q3SAT is to decide whether ϕ is true,
where Pi is either ∃ or ∀, and ψ is an instance of 3SAT, as in the proof of Theorem 3.4.

1:20 Wenfei Fan et al.

Given an instance ϕ of Q3SAT, we construct a specification S, a query Q and a tuple t.
We show that ϕ is true iff t is a certain current answer to Q. The reduction uses neither
denial constraints nor copy functions.
(1) Temporal instances. The specification S consists of two relation schemas Rc(EID, C)
and Rb(EID, B) with corresponding instances Ic and Ib, respectively. Here Ic includes
two tuples (1, 0) and (2, 1) with distinct EID’s, while Ib contains a single tuple (1, 1).
Intuitively, Ic encodes Boolean values and Ib encodes a constant 1.
(2) Query. We define the query Q in FO as follows:

Q(c) = P1~x1, . . . , Pm~xm ∃ e
(
QX1(~x1) ∧ · · · ∧QXm(~xm) ∧Qψ(~x1, . . . , ~xm) ∧Rb(e, c)

)
.

Here QXi is
∧
yj∈~xi

(∃e(Rb(e, yj)), i.e., it assigns Boolean values to variables in ~xi, and
Qψ is the same as ψ.
(3) We let the tuple t be the constant tuple (1).
One can easily verify the following: the only consistent completion Dc of S is D =
(Ic, Ib) itself; and (2) when posed on D, query Q returns {(1)} iff ϕ is true. Therefore, t
is a certain current answer to Q iff ϕ is true. 2

Data complexity CCQA for CQ, UCQ, ∃FO+and FO:. It suffices to show that CCQA(LQ)
is coNP-hard when LQ is CQ, query Q is fixed, and when neither denial constraints nor
copy functions are defined. We prove this by reduction from the complement of 3SAT.
Given an instance ψ = C1∧· · ·∧Cr of 3SAT, as in the proof of Theorem 3.4, we construct
a specification S consisting of two temporal instances of fixed relation schemas, with
neither denial constraints nor copy functions. We also define a fixed query Q and a
tuple t. We show that ψ is not satisfiable iff t is a certain current answer to Q.
(1) Temporal instances. The specification S consists of two relational schemas RX =
(EIDx, Ax) and R¬ψ = (EID, idC , Px,EIDx, Bx, w). The corresponding instances IX and
I¬ψ are defined as follows:
— The temporal instance IX of RX encodes truth assignments for X and consists of
{ (xi, 0), (xi, 1) | i ∈ [1, k] }. Each completion IcX corresponds to a truth assignment
µX for X such that µX(xi) = 1 iff (xi, 0) ≺cx (xi, 1).

— The temporal instance I¬ψ of R¬ψ encodes the negation of clauses in ψ. For each
j ∈ [1, r], clause Cj = `j1∨ `

j
2∨ `

j
3 is encoded with three tuples in I¬ψ: (eid, j, i, xli , vi, 1)

for each i ∈ [1, 3], where xl1 , xl2 , xl3 are variables in `j1, `
j
2, `

j
3, respectively, such that

vi = 0 if `ji is xli , and vi = 1 if `ji is xli . Here eid is a unique value for each tuple.

(2) Query Q. The query is used to check whether a truth assignment for X satisfies ψ.
It is defined as:
Q(w) = ∃j, x1, x2, x3, v1, v2, v3, eid1, eid2, eid3

(
RX(x1, v1) ∧RX(x2, v2) ∧RX(x3, v3)∧

R¬ψ(eid1, j, 1, x1, v1, w) ∧R¬ψ(eid2, j, 2, x2, v2, w) ∧R¬ψ(eid3, j, 3, x3, v3, w)
)
.

Given a consistent completion Dc of S, the query Q returns a singleton {(1)} iff there
exists a clause Cj such that the truth assignment encoded in IcX of Dc does not satisfy
any literal in Cj . Indeed, the completed currency order ≺cx in IcX of Dc ensures that
for each xi ∈ X, a unique truth value is selected for each variable in the current
instance LST(IcX). The query Q is evaluated on LST(IcX) and LST(Ic¬ψ), and it checks
whether each and every literal in Cj is false, i.e., the clause is not satisfied by the truth
assignment. It returns {(1)} iff there exists at least one Cj that is not satisfied.
(3) Tuple t. The tuple t is simply defined to be (1).

Determining the Currency of Data 1:21

We next verify the correctness of the reduction. That is, we show that ψ is not satisfi-
able iff for all consistent completions Dc ∈ Mod(S), t ∈ Q

(
LST(Dc)

)
.

⇒ Suppose that ψ is not satisfiable. Then for each truth assignment for X, ψ is not
satisfied. From the discussion above it follows that for each consistent completion of
Dc in Mod(S), t ∈ Q

(
LST(Dc)

)
, i.e., t is a certain current answer to Q.

⇐ Conversely, assume that ψ is satisfiable. Then there exists a truth assignment µX
for X that satisfies ψ. Define a completion Dc of S such that for each xi ∈ X, (xi, 0) ≺cx
(xi, 1) iff µ(xi) = 1 for tuples (xi, 0) and (xi, 1) in IcX , where IcX is the completion of IX
in D. It is readily verified that Dc is a consistent completion of S and furthermore,
Q
(
LST(Dc)

)
is empty. In other words, t is not a certain current answer to Q. 2

Upper bounds CCQA:. We establish the matching upper bounds by providing a non-
deterministic algorithm for the complement problem. The algorithm checks, given a
specification S, a query Q and a tuple t as input, whether t is not a certain current
answer to Q, as follows.
(1) Guess a completion Dc of S.
(2) Check whether Dc is in Mod(S); if not, reject the guess; otherwise continue.
(3) Check whether t 6∈ Q

(
LST(Dc)

)
, and return “no” if it is the case.

The correctness of the algorithm is clear. We next analyze its complexity. For the
combined complexity, one can verify the following. (a) Step 2 is in NP; and (b) Step 3
is in coNP when LQ is ∃FO+, and is in PSPACE when LQ is FO. Putting these together,
the combined complexity of CCQA(LQ) is in Πp

2 when LQ is CQ, UCQ or ∃FO+, and it
is in NPSPACE = PSPACE when LQ is FO. For the data complexity, observe that Step 2
is in PTIME when denial constraints are fixed, and that Step 3 is in PTIME when Q
is fixed no matter what query language Q is in. Hence for CQ, UCQ, ∃FO+and FO, the
data complexity of CCQA(LQ) is in coNP.

Special cases. Worse still, the absence of denial constraints does not make our lives
easier when it comes to CCQA. Indeed, in the proof of Theorem 3.5, the lower bounds
of CCQA are verified using neither denial constraints nor copy functions. This is in
contrast to Theorem 6.1 to be seen shortly, which tells us that when denial constraints
are absent, CPS, COP and DCIP all become easier.

COROLLARY 3.6. In the absence of denial constraints, CCQA(LQ) remains coNP-
hard (data complexity) and Πp

2-hard (combined complexity) even for CQ, and PSPACE-
hard (combined complexity) for FO.

PROOF. These results follow immediately from the proof of Theorem 3.5. Indeed, a
close examination of the proofs of that theorem reveals that no denial constraints are
used in its reductions for verifying the lower bounds.

Theorem 3.5 shows that the complexity of CCQA for CQ is rather robust: adding dis-
junctions does not increase the complexity. We next investigate the impact of removing
Cartesian product from CQ on the complexity of CCQA. We consider SP queries, which
are CQ queries of the form

Q(~x) = ∃e ~y
(
R(e, ~x, ~y) ∧ ψ

)
,

where ψ is a conjunction of equality atoms and ~x and ~y are disjoint sequences of vari-
ables in which no variable appears twice. In other words, SP queries support projection
and selection only. For instance, the queries Q1 –Q4 of Example 1.1 are SP queries. SP
queries in which ψ is a tautology are referred to as identity queries.

1:22 Wenfei Fan et al.

Unfortunately, the following result tells us that in the presence of denial constraints,
CCQA is no easier for identity queries than for ∃FO+.

COROLLARY 3.7. For SP queries, CCQA(SP) is coNP-complete (data complexity) and
Πp

2-complete (combined complexity) in the presence of denial constraints, even for iden-
tity queries.

PROOF. It has been verified in the proof of Theorem 3.5 that CCQA(LQ) is in Πp
2

(combined complexity) and coNP (data complexity) for CQ queries, which include iden-
tity queries. Hence it suffices to show that CCQA is coNP-hard (data complexity) and is
Πp

2-hard (combined complexity) for identity queries.
These lower bounds are verified by showing the Σp2-hardness (resp. NP-hardness)

of the complement problem, which is to decide whether a given tuple does not be-
long to the certain current answers. We prove this by reduction from the CPS prob-
lem, which is NP-complete (data complexity) and Σp2-complete (combined complexity)
by Theorem 3.1.

Given a specification S, we define a specification S′ that extends S by adding a binary
temporal instance RN (EID, A), of which the temporal instance IN consists of two tuples
s and t that refer to the same entity. Neither denial constraints nor copy functions are
defined on RN . Let Q be the identity query on RN , i.e., Q(x, y) = RN (x, y). Then t (or
equivalently, s) is not in the certain current answer of Q w.r.t. S′ if CPS(S) is true.
⇒ Suppose that CPS(S) is true. Then there exists a consistent completion Dc ∈
Mod(S). In addition, Dc can be extended to two distinct completions (Dc)′ of S such
that in one completion s is the current answer to Q, whereas in the other completion t
is the current answer. Since these two tuples are distinct, the certain current answer
to Q is empty and hence t is not a certain answer.
⇐ Suppose that t is not a certain current answer to the identity query on RN . Then

there exists a consistent completion (D′)c of S′ such that t does not belong to the cur-
rent instance of IcN , where IcN is the completion of IN in (D′)c. It can be readily verified
that when restricted to instances in S, (D′)c induces a consistent completion Dc for S.
Hence, CPS(S) is true.

In Section 6 we shall identify tractable cases for CPP, COP, DCIP and CCQA(SP) in
the absence of denial constraints.

4. CURRENCY PRESERVATION IN DATA COPYING
As we have seen earlier, copy functions tell us what data values in a relation have
been imported from other data sources. Naturally we want to leverage the imported
values to improve query answers. This gives rise to the following questions: do the copy
functions import sufficient current values for answering a query Q? If not, how do we
extend the copy functions such that Q can be answered with more up-to-date data? To
answer these questions we introduce a notion of currency-preserving copy functions.
We consider a specification S of data currency consisting of two collections of temporal
instances (data sources) D = (D1, . . . , Dp) and D′ = (D′1, . . . , D

′
q), with (1) a set Σi

(resp. Σ′j) of denial constraints on Di for each i ∈ [1, p] (resp. D′j for j ∈ [1, q]), and (2) a
collection ρ of copy functions ρ(j,i) that imports tuples from D′j to Di, for i ∈ [1, p] and
j ∈ [1, q], i.e., all the functions of ρ import data from D′ to D.
Extensions. To formalize currency preservation, we first present the following no-
tions. Assume that Di = (D,≺A1

, . . . ,≺An
) and D′j = (D′,≺B1

, . . . ,≺Bm
) are tempo-

ral instances of relation schemas Ri = (EID, A1, . . . , An) and R′j = (EID, B1, . . . , Bm),
respectively. Assume that n ≤ m. An extension of Di is a temporal instance De

i =

Determining the Currency of Data 1:23

FN LN address salary status
s′1: Mary Dupont 6 Main St 60k married
s′2: Mary Dupont 6 Main St 80k married
s′3: Mary Smith 2 Small St 80k divorced

Fig. 3. Relation Mgr

(De,≺eA1
, . . . ,≺eAn

) of Ri such that (1) D ⊆ De, (2) ≺Ah
⊆≺eAh

for all h ∈ [1, n], and (3)
πEID(De) = πEID(D). Intuitively, De

i extends Di by adding new tuples for those entities
that are already in Di. It does not introduce new entities.
Consider two copy functions: ρ(j,i) imports tuples from D′j to Di, and ρe(j,i) from D′j to
De
i , both of signature Ri[~A]⇐ R′j [

~B], where ~A = (A1, . . . , An) and ~B is a sequence of n
attributes in R′j . We say that ρe(j,i) extends ρ(j,i) if
(1) De

i is an extension of Di;
(2) for each tuple t inDi, if ρ(j,i)(t) is defined, then so is ρe(j,i)(t) and moreover, ρe(j,i)(t) =

ρ(j,i)(t);
(3) for each tuple t in De

i \Di, there exists a tuple s in D′j such that ρe(j,i)(t) = s.

We refer to De
i as the extension of Di by ρe(j,i).

Observe that De
i is not allowed to expand arbitrarily: (a) each new tuple t in De

i is
copied from a tuple s in D′j ; and (b) no new entity is introduced. Note that only copy
functions that cover all attributes but EID of Ri can be extended. This assures that all
the attributes of a new tuple are in place.
An extension ρe of ρ is a collection of copy functions ρe(j,i) such that ρe 6= ρ and moreover,
for all i ∈ [1, p] and j ∈ [1, q], either ρe(j,i) is an extension of ρ(j,i), or ρe(j,i) = ρ(j,i). We
denote the set of all extensions of ρ as Ext(ρ).
For each ρe in Ext(ρ), we denote by Se the extension of S by ρe, which consists of
the same D′ and denial constraints as in S, but has copy functions ρe and De =
(De

1, . . . , D
e
p), where De

i is the union of extensions of Di, one for each ρe(j,i), for j ∈ [1, q].

Currency preservation. We are now ready to define currency preservation. Consider
a collection ρ of copy functions in a specification S. We say that ρ is currency preserving
for a query Q w.r.t. S if (a) Mod(S) 6= ∅, and moreover, (b) for all ρe ∈ Ext(ρ) such that
Mod(Se) 6= ∅, we have that⋂

Dc∈Mod(S)

Q
(
LST(Dc)

)
=

⋂
Dc

e∈Mod(Se)

Q
(
LST(Dc

e)
)
.

Intuitively, ρ is currency preserving if (1) ρ is meaningful; and (2) for each extension
ρe of ρ that makes sense, the certain current answers to Q are not improved by ρe,
i.e., no matter what additional tuples are imported for those entities in D, the certain
current answers to Q remain unchanged.

Example 4.1. As shown in Fig. 3, relation Mgr collects manager records. Consider
a specification S1 consisting of the following: (a) temporal instances Mgr of Fig. 3 and
Emp of Fig. 1, in which partial currency orders are empty for all attributes; (b) denial
constraints ϕ1–ϕ3 of Example 2.1 and

ϕ5: ∀s, t : Mgr
(
(s[EID] = t[EID] ∧ s[status] = “divorced” ∧

t[status] = “married”) → t ≺LN s
)
,

i.e., if s[status] is divorced and t[status] is married, then s is more current than t in LN;
and (c) a copy function ρ with signature Emp[~A]⇐ Mgr[~A], where ~A is (FN, LN, address,

1:24 Wenfei Fan et al.

salary, status), such that ρ(s3) = s′2, i.e., s3 of Emp is copied from s′2 of Mgr. Obviously S1

is consistent.
Recall query Q2 of Example 1.1, which is to find Mary’s current last name. For Q2, ρ
is not currency preserving. Indeed, there is an extension ρ1 of ρ by copying s′3 to Emp.
In all consistent completions of the extension Emp1 of Emp by ρ1, the answer to Q2

is Smith. However, the answer to Q2 in all consistent completions of Emp is Dupont
(see Examples 1.1 and 2.5). In contrast, ρ1 is currency preserving for Q2: copying more
tuples from Mgr (i.e., tuple s′1) to Emp does not change the answer to Q2 in Emp1. �

Deciding currency preservation. There are several decision problems associated
with currency-preserving copy functions, which we shall investigate in the next sec-
tion. The first problem is to decide whether the given copy functions have imported all
necessary current data for answering a query. In practice, one often repeatedly issues a
(fixed) load of queries on a database Dt that imports data from multiple sources. Each
time before the queries are executed, CPP is to ensure that the current values needed
for answering the queries have been imported and updated from the data sources. The
need for the check is evident since the data sources are typically dynamic in the real
world, i.e., incrementally updated by including new information. CPP aims to keep Dt

up-to-date w.r.t. the dynamic data sources, and to extend copy functions by importing
current information from those data sources that was overlooked.

CPP(LQ): The currency preservation problem.
INPUT: A query Q in LQ, and a specification S of data currency with copy

functions ρ.
QUESTION: Is ρ currency preserving for Q?

Extending copy functions. Consider a consistent specification S in which ρ is not
currency preserving for a query Q. The next problem is to decide whether ρ in S can be
extended to be currency preserving for Q at all. Here we consider consistent specifica-
tions S only, since when S is inconsistent, one cannot extend it and make it currency
preserving (see more detailed discussions in Section 5).

ECP(LQ): The existence problem.
INPUT: A query Q in LQ, and a consistent specification S with non-currency-

preserving ρ
QUESTION: Does there exist ρe in Ext(ρ) that is currency preserving for Q?

Bounded extension. We also want to know whether it suffices to extend ρ by copying
additional data of a bounded size, and make it currency preserving and up-to-date.
That is, whether ρ can be made currency preserving with bounded cost.

BCP(LQ): The bounded copying problem.
INPUT: S, ρ and Q as in CPP, and a positive number k.
QUESTION: Does there exist ρe ∈ Ext(ρ) such that ρe is currency preserving for Q

and |ρe| ≤ k + |ρ|?

5. DECIDING CURRENCY PRESERVATION
We next study the decision problems in connection with currency-preserving copy func-
tions, namely, CPP(LQ), ECP(LQ) and BCP(LQ) when LQ is CQ, UCQ, ∃FO+or FO. We
provide their combined complexity and data complexity bounds.

Determining the Currency of Data 1:25

Checking currency preservation. We first investigate CPP(LQ), the problem of de-
ciding whether a collection of copy functions in a given specification is currency pre-
serving for a query Q. We show that CPP is nontrivial. Indeed, its combined complexity
is already Πp

3-hard when Q is in CQ, and it is PSPACE-complete when Q is in FO.
One might be tempted to think that fixing denial constraints would make our lives

easier. Indeed, in practice denial constraints are often predefined and fixed, and only
data, copy functions and query vary. Moreover, as shown in Theorem 3.1 for the consis-
tency problem, fixing denial constraints indeed helps there. However, it does not sim-
plify the analysis of the combined complexity when it comes to CPP. Even when both
query and denial constraints are fixed, the problem is Πp

2-complete (data complexity).

THEOREM 5.1. For CPP(LQ), the combined complexity is
(1) Πp

3-complete when LQ is CQ, UCQ or ∃FO+, and
(2) PSPACE-complete when LQ is FO.
(3) Its data complexity is Πp

2-complete when LQ ∈ {CQ,UCQ, ∃FO+,FO}.
The combined complexity bounds remain unchanged when denial constraints and copy
functions are fixed.

PROOF. We show that CPP(LQ) is (a) Πp
3-hard when Q is in CQ and in Πp

3 when
Q is in ∃FO+(combined complexity), (b) PSPACE-complete when Q is in FO (combined
complexity); (c) Πp

2-hard when Q is in CQ and in Πp
2 when Q is in FO (data complexity).

Combined complexity CPP for CQ: It suffices to show that CPP(CQ) is already Πp
3-hard.

We verify this by reduction from the complement of the ∃∗∀∗∃∗3CNF problem, which is
known to be Σp3-complete [Stockmeyer 1976]. The ∃∗∀∗∃∗3CNF problem is to determine,
given a sentence ϕ = ∃X∀Y ∃Z ψ(X,Y, Z), whether ϕ is true. Here X = {x1, . . . , xn },
Y = { y1, . . . , ym }, Z = { z1, . . . , zk }, and ψ is an instance C1 ∧ · · · ∧ Cr of 3SAT, as
described in the proof of Theorem 3.4.

Given an instance ϕ = ∃X∀Y ∃Z ψ(X,Y, Z) of the ∃∗∀∗∃∗3CNF problem, we define a
specification S (with copy functions ρ̄) and a CQ query Q, such that ϕ is true iff the
copy functions ρ̄ in S are not currency preserving for Q.
(1) Temporal instances. The specification S consists of data sources D′ and D, where
D consists of eight relational schemas: R01(EID, A), RX(EID, X, V), RY (EID, Y, V),
R∨(EID, B,A1, A2), R∧(EID, B,A1, A2), R¬(EID, A, Ā), Rac(EID, A1, A2), Rb(EID, C); and
D′ consists of two relations R′X(EID, X, V) and R′b(EID, C). The corresponding temporal
instances I01, I∨, I∧ and I¬ are shown in Fig. 2. Figure 4 shows the remaining
instances. Here IX (resp. IY) is used to represent truth assignments of variables in X
(resp. Y), and Iac is an auxiliary instance needed to convert 0 to a constant a distinct
from c and d, and constant 1 to c. Furthermore, I ′X also encodes truth values of X,
but with initial currency orders defined. We also use Ib and I ′b to control the latest
value after data are copied. In all these temporal instances we leave the initial partial
currency orders empty, except for I ′X and I ′b, as shown in Fig. 4.
(2) Copy function. We use two functions ρ1 : RX [X,V]⇐ R′X [X,V] and ρ2 : Rb[EID, C]⇐
R′b[EID, C], initially empty. Thus ρ̄ = {ρ1, ρ2} (no copy functions are defined on RY).
We constrain the possible extensions of ρ̄ by enforcing that each entity in all instances
has only two possible tuples. These can be expressed as fixed denial constraints.
(3) Query. The CQ query Q is defined as follows (omitting the EID attributes):

Q(v) = ∃~x ∃~y ∃~z
(
QX(~x) ∧QY (~y) ∧QZ(~z) ∧ Qψ(~x, ~y, ~z, v) ∧Rb(v)

)
.

Here QX(~x) (resp. QY (~y)) extracts a truth assignment of n variables in X (resp. m
variables in Y) by accessing RX (resp. RY), and QZ(~z) generates all k binary tuples
by means of Cartesian products of R01. Furthermore, Qψ(~x, ~y, ~z, v) is a CQ query that

1:26 Wenfei Fan et al.

IX =

EID X V
1 x1 0
1 x1 1
· · · · · · · · ·
n xn 0
n xn 1

IY =

EID Y V
1 y1 0
1 y1 1
· · · · · · · · ·
m ym 0
m ym 1

I ′X =

EID B V
s1 1 x1 0

s1 ≺V s2s2 1 x1 1
s′1 n + 1 x1 0

s′2 ≺V s′1s′2 n + 1 x1 1
· · · · · · · · ·

s2n−1 n xn 0
s2n−1 ≺V s2ns2n n xn 1

s′2n−1 2n xn 0
s′2n ≺V s′2n−1s′2n 2n xn 1

Iac =
EID A1 A2

eid1 0 a
eid2 1 c

Ib =
EID C
1 c
1 d

, I ′b =

EID C
u1 1 c
u2 1 d

u2 ≺C u1

Fig. 4. Temporal instances used in lower bound proof of Theorem 5.1(1).

encodes the truth value of ψ(X,Y, Z) for a given truth assignment µX for X, µY for Y
and µZ for Z, such that v = c if ψ is satisfied by µX , µY and µZ , and a value distinct a
from c and d otherwise. The query Qψ can be expressed in CQ in terms of R∨, R∧, R¬
and Rac, along the same lines as in the proof of Theorem 3.5(1).
We next explain the intuition behind the reduction. Recall that Q is evaluated over
the current instance LST(Dc) of every consistent completion Dc of S. Here Q

(
LST(Dc)

)
returns a nonempty set only if for the truth assignments µX for X and µY for Y
encoded in LST(IcX) and LST(IcY), respectively, there exists a truth assignment µZ
for Z such that ψ is satisfied, and in addition, LST(Icb) = {(1, c)}. Since we regard
the tuples in all instances (except IX , IY and Ib) as separate entities, we have that
LST(Ic01) = I01, LST(Ic∨) = I∨, LST(Ic∧) = I∧ and LST(Ic¬) = I¬, for any completion
of these instances. By contrast, LST(IcX), LST(IcY) and LST(Icb) may vary in different
completions. It is readily verified that the certain current query answer of Q w.r.t. S
is empty. Indeed, LST(Icb) can be either {(1, c)} or {(1, d)}. When LST(Icb) is {(1, d)},
Q
(
LST(Dc)

)
is empty, and hence so is the certain current query answer of Q w.r.t. S.

Now let us consider the impact of extending copy functions ρ̄ = {ρ1, ρ2}. Let ρ̄e
be an extension of ρ̄. Denote by Se the corresponding specification. Observe that ρ̄e
can extend ρ2 such that LST(Icb) = {(1, c)} given the currency order defined on I ′b. In
addition, an extension ρe1 of ρ1 may limit the set of possible truth assignments for X,
which are realized as LST(IcX), for completions of Se, due to the partial currency order
defined in I ′X . For instance, suppose that ρe1

(
(i, xi, 0)

)
= s2i−1 and ρe1

(
(i, xi, 1)

)
= s2i

then the latest value of xi is 1 since s2i−1 ≺V s2i. By contrast, when ρe1
(
(i, xi, 0)

)
= s′2i−1

and ρe1
(
(i, xi, 1)

)
= s′2i then the latest value of xi is 0 since s′2i ≺V s′2i−1. Hence we can

extend the copy function ρ1 to select a particular truth assignment µX for X.
One can readily verify that S is consistent, i.e., Mod(S) is nonempty.
We next show that the reduction above is correct, i.e., ϕ is true iff the copy functions

ρ̄ in S are not currency preserving for Q.
⇒ Assume that ϕ is true. Then there exists a truth assignment µ0

X for X such that
for all µY of Y , there exists µZ for Z that satisfies ψ together with µ0

X and µY . Define
an extension ρ̄e of ρ̄ such that in its extended specification Se, for any completion Dc

e
of Se, LST(IcX) represents µ0

X , and LST(Icb) = {(1, c)}. As argued above, this is possible.
Then Q

(
LST(Dc

e)
)

is nonempty and in fact, the certain current answer to Q w.r.t. Se is

Determining the Currency of Data 1:27

nonempty, since no matter how IY is completed, the answer to Q is nonempty in this
completion. As remarked earlier, the certain current answer to Q w.r.t. S is empty.
Hence ρ̄ is not currency preserving.
⇐ Conversely, assume that ϕ is false. Then for all truth assignments µX for X, there

exists a truth assignment µY for Y , such that for all µZ for Z, ψ is not satisfied by
µX , µY and µZ . As a result, no matter how we extend ρ̄, the certain current answer
to Q w.r.t. the extended specification remains empty. Indeed, for any extension of ρ1

that encodes µX , there is a completion of IY that encodes a truth assignment µY for
Y and makes ψ false no matter what µZ for Z is considered. In other words, for such
completions Dc

e of the extended specification Se, Q
(
LST(Dc

e)
)

is empty and hence, so is
the certain current answer to Q w.r.t. Se. Therefore, ρ̄ is currency preserving. 2

Combined complexity CPP for FO: We next show that CPP(FO) is PSPACE-hard. We
prove this by reduction from the complement of the Q3SAT problem, which is PSPACE-
complete (cf. [Papadimitriou 1994]). We refer to the proof of Theorem 3.5(2) for the
statement of the Q3SAT problem. Given a instance ϕ = P1X1 · · ·PmXmψ of Q3SAT, we
define a specification S with a collection ρ of copy functions and a query Q. We show
that ϕ is true iff ρ is not currency preserving for Q.
(1) We construct S as follows. It consists of data sources D′ and D, where D′ has a
single relation I ′b and D consists of two relations I01 and Ib. Here the instance I01 is
the same as in the previous proof, Ib = {(eid, c)} and I ′b = {(eid, c), (eid, d)}. No partial
currency orders are present. A single copy function ρ is defined from I ′b to Ib which
maps ρ

(
(eid, c)

)
= (eid, c). No denial constraints are defined in S.

(2) We define the query Q in FO as follows (omitting the EID attributes):
Q(v) = P1~x1, . . . , Pm~xm

(
QX1

(~x1) ∧ · · · ∧QXm
(~xm) ∧Qψ(~x1, . . . , ~xm) ∧Rb(v)

)
.

Here QXi generates all |~xi|-ary binary tuples by means of Cartesian products of R01,
and Qψ is the same as ψ.
We show that this coding is indeed a reduction from the complement of Q3SAT to
CPP(FO). Observe that LST(Dc) = D for any completion Dc of D and hence the
certain current answer to Q w.r.t. S coincides with Q(D). Furthermore, there is only
one possible extension ρe of ρ in which the tuple (eid, d) is copied from I ′b to Ib. Let
De =

(
I01, Ib ∪ {(eid, d)}

)
. It is readily verified that there are two possible completions

of De with corresponding current instances D1 = D and D2 =
(
I01, {(eid, d)}

)
.

Assume first that ϕ is true. Then the current answer to Q in D is (c), whereas the
current answer to Q in De is Q(D1) ∩ Q(D2) = (c) ∩ (d) and thus empty. These tell
us that ρ is not currency preserving for Q. Conversely, assume that ϕ is false. Then
Q returns the empty set irrespectively of the current instances of Ib and extensions
thereof. In other words, ρ is currency preserving for Q. 2

Data complexity CPP for CQ: We show that CPP(LQ) is Πp
2-hard by reduction from

the ∀∗∃∗3CNF problem which is known to be Πp
2-complete [Stockmeyer 1976]. The

∀∗∃∗3CNF problem is to decide, given a sentence ϕ = ∀X∃Y ψ(X,Y), whether ϕ is true.
Here X = {x1, . . . , xn }, Y = { y1, . . . , ym } and ψ is an instance C1 ∧ · · · ∧ Cr of 3SAT
over X ∪ Y . Given an instance ∀X∃Y ψ(X,Y), we define a specification S and a query
Q in CQ, such that ϕ is true iff the copy functions ρ̄ in S are currency preserving for Q.
(1) Temporal instances. The specification S consists of data sources D and D′, where
D consists of three relational schemas RXY (EID, X, V), RC(EID, ,CID,POS, P, L, V, C)
and Rb(EID, C); and D′ consists of the schemas R′X(EID, X, V) and R′b(EID, C). The
corresponding instances and initial partial currency orders on them are as shown in

1:28 Wenfei Fan et al.

IXY =

EID X V
1 x1 0
1 x1 1
2 x2 0
2 x2 1
· · · · · · · · ·
n xn 0
n xn 1

n + 1 y1 0
n + 1 y1 1
n + 2 y2 0
n + 2 y2 1
· · · · · · · · ·

n + m ym 0
n + m ym 1

I ′X =

EID X V
s1 1 x1 0

s1 ≺V s2s2 1 x1 1
s′1 n + 1 x1 0

s′2 ≺V s′1s′2 n + 1 x1 1
· · · · · · · · ·

s2n−1 n xn 0
s2n−1 ≺V s2ns2n n xn 1

s′2n−1 2n + 1 xn 0
s′2n ≺V s′2n−1s′2n 2n + 1 xn 1

Ib =
EID C
1 c
1 d

I ′b =

EID C
u1 1 c
u2 1 d

u2 ≺C u1

Fig. 5. Temporal instances used in lower bound proof of Theorem 5.1(3).

Fig. 5. Intuitively, IXY is used to represent truth assignments for X and Y possibly
selected by (non-empty) copy functions of signature RXY [X,V] ⇐ R′X [X,V] that
are consistent with the initial partial currency order on IX , whereas Ib and I ′b are
used to control the latest value of the C-attribute by means of the copy function
Rb[EID, C] ⇐ R′b[EID, C]. Furthermore, the instance IC is used to encode negations
of the clauses in ψ. That is, for each j ∈ [1, r] and clause Cj = `j1 ∨ `

j
2 ∨ `

j
3, consider

Cj = ¯̀j
1 ∧ ¯̀j

2 ∧ ¯̀j
3 and denote by µj the unique truth assignment for variables in Cj that

satisfies Cj . Then, for each j ∈ [1, r], we add the following three tuples to IC :
(eid, j, 1, z1, v1, c), (eid, j, 2, z2, v2, c), (eid, j, 3, z3, v3, c),

where zi = ¯̀j
i if ¯̀j

i is xk or yk, and zi = `ji otherwise. Furthermore, vi is µj(¯̀j
i) if ¯̀j

i is xk
or yk, and it is µj(`ji) otherwise. Here eid is unique for each tuple.

(2) Copy functions and denial constraints. We define empty copy functions
ρ1 : RXY [X,V] ⇐ R′X [X,V] and ρ2 : Rb[C] ⇐ R′b[C]. Let ρ̄ = {ρ1, ρ2}. Furthermore,
we constrain the possible extensions of ρ̄ by enforcing that each entity in all instances
has only two possible tuples. These can be expressed as fixed denial constraints.
(3) Query. The query CQ Q is defined as follows (omitting the EID attributes):

Q = ∃z1, z2, z3, v1, v2, v3, j, w
(
RXY (z1, v1) ∧RXY (z2, v2) ∧RXY (z3, v3) ∧

RC(j, 1, z1, v1, w) ∧RC(j, 2, z2, v2, w) ∧RC(j, 3, z3, v3, w) ∧Rb(w)
)
.

For each Dc ∈ Mod(S), LST(IcXY) corresponds to truth assignments µX and µY
for X and Y , respectively. Here IcXY is the completion of IXY in Dc. Furthermore,
Q
(
LST(Dc)

)
returns a non-empty set iff for µX and µY , at least one conjunctive clause

Cj is satisfied, and in addition, LST(Icb) = {(1, c)}.
Now consider extensions ρ̄e of ρ̄ and denote by Se the corresponding specification.

Observe that due to the denial constraints, no new tuples can be added to any of
the instances. Indeed, any such new tuple would cause Mod(Se) to be empty and
such extensions are not taken into account by the definition of currency preservation.
Clearly, every extension ρe1 of ρ1 limits the set of possible truth assignments for X
that are realized as LST(IcXY), for completions of Se. Indeed, copy functions from R′X
to RXY have specific choices for the variables in X, due to the partial orders present
in I ′X , as argued in the proof of the combined complexity of CPP (CQ) given above.
Furthermore, if ρ̄e extends ρ2, then LST(Icb) = {(1, c)}; otherwise, it can be either

Determining the Currency of Data 1:29

{(1, c)} or {(1, d)} depending on how it is completed. Observe that LST(Icb) = {(1, d)}
makes Q empty, irrespective of the other relations. Indeed, this is because none of the
tuples in IC have d as the last attribute value.

Let TX(ρe1) be the set of truth assignments for X that are witnessed by completions
of Se. Note that TX(ρ1) consists of all possible truth assignments since the copy func-
tion ρ1 is empty. Then

⋂
Dc∈Mod(Se)Q

(
LST(Dc)

)
is non-empty if for all µX ∈ TX(ρe1), all

truth assignments µY make at least one conjunctive clause Cj true and moreover, ρe2
expands ρ2, i.e., LST(Icb) = {(1, c)}.

We next show that ϕ is true iff ρ̄ in S is currency preserving for Q.
⇒ Assume that ϕ is satisfied. The certain current answers of Q on S will return

empty. This is simply because LST(Icb) = {(1, d)} is realized in a completion. We know,
however, that for every µX , there exists a µY such that ψ evaluates to true. This is in
particular true for any subset of truth assignments of TX(ρe1) of X for extensions Se of
S. As a consequence, the certain current answers of Q on Se will be empty, even when
LST(Icb) = {(1, c)}. In other words, ρ̄ is currency preserving.
⇐ Assume that ϕ is not satisfied. Observe that again, the current answers of Q on
S will return empty. This is because LST(Icb) = {(1, d)} is realized in a completion. It
can be easily verified that ρ̄ is not currency preserving. Indeed, since ϕ is not satisfied
there must exist a µX such that ∃Y ψ(µX , Y) is false. By extending ρ̄ to ρ̄e = {ρe1, ρe2}
such that TX(ρe1) = {µX} and by extending ρ2 such that the only current instance of Ib
is LST(Icb) = {(1, c)}, we obtain that the certain current answers for Se is non-empty.
Hence, ρ̄ is not currency preserving. 2

Upper bounds CPP: We next provide upper bounds for CPP(LQ). We develop a decision
algorithm that takes a specification S and query Q ∈ LQ as input, and returns “yes” if
the copy functions ρ̄ in S are not currency preserving for Q.
The algorithm is as follows. As an initial step, it checks whether S is inconsistent. If so,
then ρ̄ is not currency preserving by the definition of currency preservation, and hence
the algorithm returns “yes”. Otherwise, if S is consistent, the algorithm proceeds as fol-
lows. We denote by adom(S, Q) all constants appearing in any of the tuples in the tem-
poral instances and denial constraints in S together with all occurring constants in Q.

(1) Guess a pair (t̄, ρ̄e), where t̄ is a tuple of the result schema of Q and with values
taken from adom(S, Q), and ρ̄e is a candidate extension of ρ̄.

(2) Verify whether ρ̄e is an element of Ext(ρ̄). If so, let Se be the corresponding extended
specification of S by ρ̄e. Verify whether Mod(Se) 6= ∅. If not, reject the current guess.

(3) Verify whether t̄ ∈ Q
(
LST(Dc)

)
for every Dc ∈ Mod(S).

(a) If so, check whether there exists a De ∈ Mod(Se) such that t̄ 6∈ Q
(
LST(De)

)
. If

not, reject the current guess, otherwise return “yes”.
(b) If not, check whether for every De ∈ Mod(Se), t̄ ∈ Q

(
LST(De)

)
. If not, reject

the current guess, otherwise return “yes”.

Based on the algorithm, we present an analysis of the complexity of CPP(LQ) as
follows. We start with the combined complexity. Observe that initial step and step
2 can be done in Πp

2 by Theorem 3.1. When LQ is ∃FO+, we know from Theorem 3.5
that steps 3(a) and 3(b) can be done in Πp

2 and Σp2, respectively. Hence, the overall
complexity of the algorithm is Σp3 = NPΠp

2 . Consequently, CPP(LQ) is in Πp
3 for ∃FO+.

Similarly, when LQ is FO, Theorem 3.5 tells us that steps 3(a) and 3(b) can be done in
PSPACE. As a result, CPP(LQ) is in PSPACE for FO.
When data complexity is concerned, again from Theorems 3.1 and 3.5 it follows that

1:30 Wenfei Fan et al.

the initial step can be done in coNP, steps 2, 3(a) and 3(b) can be done in NP, coNP and
NP, respectively, even when LQ is FO. Therefore, the data complexity of the algorithm
is Σp2 = NPNP. Hence CPP(LQ) is in Πp

2.

The feasibility of currency preservation. We next consider ECP(LQ) to decide,
given a query Q and a consistent specification S in which copy functions ρ̄ are not cur-
rency preserving forQ, whether we can extend ρ̄ to preserve currency. The good news is
that the answer to this question is affirmative: we can always extend ρ̄ and make them
currency preserving for Q. Hence the decision problem ECP is in O(1) time, although
it may take much longer to explicitly construct a currency preserving extension of ρ̄.

When S is not necessarily consistent, it is easy to verify that it is Σp2-complete to de-
cide whether ρ̄ can be made currency preserving for Q. Indeed, this problem is equiv-
alent to CPS, since ρ̄ can be made currency preserving for Q iff S is consistent. From
Theorem 3.1 it follows that the combined complexity of this problem is Σp2-complete,
and its data complexity is NP-complete.

PROPOSITION 5.2. ECP(LQ) is decidable in O(1) time for both the combined com-
plexity and data complexity, when LQ is CQ, UCQ, ∃FO+or FO.

PROOF. Consider data sources D = (D1, . . . , Dp) and D′ = (D′1, . . . , D
′
q), with (1) a

set Σi (resp. Σ′j) of denial constraints on Di for each i ∈ [1, p] (resp. D′j for j ∈ [1, q]), and
(2) a collection ρ of copy functions ρ(j,i) that import tuples from D′j to Di, for i ∈ [1, p]
and j ∈ [1, q]. We say that an extension ρe(j,i) of ρ(j,i) is maximum if either (a) no more
tuples from D′j can be copied to Di, or (b) adding any new tuple from D′j to Di makes
the modification Se of S inconsistent, i.e., Mod(Se) = ∅. In other words, there exists no
extension ρ′(j,i) of ρe(j,i) such that ρ′(j,i) 6= ρe(j,i) and it makes a consistent specification.

We show that for each ρ(j,i), we can find a maximum extension ρe(j,i) of ρ(j,i). Indeed,
we simply extend ρ(j,i) by considering tuples t in D′j one by one. If the extension of
ρ(j,i) with tuple t makes the modified specification inconsistent, we do not copy t and
consider the next tuple (according to some arbitrary order) inD′j . We repeat the process
until all tuples in D′j are checked. This yields an extension ρe(j,i). Obviously ρe(j,i) is
maximum. We extend ρ(j,i) in this way for all i ∈ [1, p] and j ∈ [1, q]. Putting these
ρe(j,i)’s together, we get an extension ρe of ρ.

We show that ρe is currency preserving. Indeed, by the construction of ρe, we have
that the specification Se derived from ρe and S is consistent, i.e., Mod(Se) 6= ∅. Fur-
thermore, Ext(ρe) = ∅, i.e., ρe cannot possibly be further extended. From the definition
of currency preservation it follows that ρe is currency preserving for Q, no matter
whether Q is in CQ, UCQ, ∃FO+or FO.

Bounded extensions. In contrast to ECP, when it comes to deciding whether ρ̄ can be
made currency-preserving by copying data within a bounded size, the analysis becomes
far more intricate. Indeed, the result below tells us that even for CQ, BCP is Σp4-hard,
and fixing denial constraints and copy functions does not help. When both queries and
denial constraints are fixed, BCP is Σp3-complete.

THEOREM 5.3. For BCP(LQ), the combined complexity is
(1) Σp4-complete when LQ is CQ, UCQ or ∃FO+, and
(2) PSPACE-complete when LQ is FO.
(3) Its data complexity is Σp3-complete when LQ ∈ {CQ,UCQ, ∃FO+,FO}.

Determining the Currency of Data 1:31

IW =

EID W
1 ⊥
· · · · · ·
p ⊥

, I ′W =

EID W
1 1
1 0
· · · · · ·
p 1
p 0

Fig. 6. Temporal instances used in lower bound proof of Theorem 5.3(1)

The combined complexity bounds remain unchanged when denial constraints and copy
functions are fixed.

PROOF. We show that BCP(LQ) is (a) Σp4-hard (combined complexity) and Σp3-hard
(data complexity) when Q is in CQ, (b) PSPACE-hard (combined complexity) when Q
is in FO, (c) it is in Σp4 (combined complexity) when Q is in ∃FO+, and (d) in PSPACE
(combined complexity) and in Σp3 (data complexity) when Q is in FO.
Combined complexity BCP for CQ: We show that BCP(CQ) is Σp4-hard by reduction from
the ∃∗∀∗∃∗∀∗3DNF problem, which is known to be Σp4-complete [Stockmeyer 1976]. An
instance of the ∃∗∀∗∃∗∀∗3DNF problem is a sentence ϕ = ∃W∀X∃Y ∀Zψ(W,X, Y, Z),
where W = {wl | l ∈ [1, p]}, X = {xi | i ∈ [1, n]}, Y = {yj | j ∈ [1,m]}, Y = {zs | s ∈ [1, q]},
and ψ is of the form C1 ∨ · · · ∨Cr. Furthermore, for each i ∈ [1, r], Ci is a conjunction of
three literals (variables or negated variables) taken from W ∪X ∪ Y ∪ Z. Given ϕ, the
∃∗∀∗∃∗∀∗3DNF problem is to determine whether ϕ is true.
Given ϕ, we define a consistent specification S with a collection ρ of copy functions, a
query Q and a positive number k. We show that ϕ is true iff there exists an extension
ρe of ρ such that ρe is currency preserving for Q and |ρe| ≤ |ρ| + k. We define k to be
p(log(p) + 1) bits, where |p| is the number of variables in W . As will be seen shortly, our
copy functions import truth assignments for variables in W , and it takes p(log(p) + 1)
bits to code such an assignment. Below we give S and Q, with fixed denial constraints.
(1) Temporal instances. The specification S includes data sources D and D′, where
D consists of nine relations: R01(EID, A), RW (EID,W), RX(EID, X, V,K), RY (EID, Y, V),
R∨(EID, B,A1, A2), R∧(EID, B,A1, A2), R¬(EID, A, Ā), Rca(EID, A1, A2) and Rb(EID, C),
and D′ consists of three schemas: R′W (EID,W), R′X(EID, X, V,K) and R′b(EID, C). The
instances I01, I∧, I∨ and I¬ are the same as their counterparts given in the proof of
Theorem 3.5(1), to encode Boolean domain, conjunction, disjunction and negation, re-
spectively (see Fig. 2). The instance Ica consists of two tuples (eid, 0, c) and (eid′, 1, a)
and is used to convert 0 to c and 1 to a constant a distinct from c and d. Here eid and
eid′ denote two new distinct identifiers. The instances IX , I ′X and IY represent truth
assignments for variables in X and Y , which are the same as their counterparts shown
in Fig. 4, except that tuples in IX and I ′X carry an extra attribute K with a constant
value of k+1 bits. The instances IW and I ′W are given in Fig. 6. Intuitively, I ′W consists
of 2p tuples and is used to encode truth assignments for variables in W . The instance
IW has p tuples (j,⊥), indicating p entities for which values will be copied from I ′W ,
where ⊥ denotes a value different from 0 and 1. In addition, we use the same Ib and I ′b
as shown in Fig. 4, to check whether an extension ρe is currency preserving for query Q
(given below). We assume that each of c and d in Ib and I ′b is a constant of k+ 1 bits. In
none of these instances, except I ′X and I ′b, is an initial partial currency order defined.
(2) Denial constraints. For IW , we define the following constraints: (a) ϕ1, asserting
that for each i ∈ [1, p], there exist at most two tuples with the same EID attribute;
and (b) ϕ2, assuring that for each i ∈ [1, p], if there exist t1 = (i,⊥) and t2 = (i, x)
with x = 0 or x = 1, then t1 ≺W t2, i.e., 0/1-values (copied from I ′W) are more current
that the ⊥-value, and hence will be chosen as the truth value of wi in LST(IeW), where

1:32 Wenfei Fan et al.

IeW denotes the extension of IW by copying new values from I ′W . Obviously these can
be expressed as denial constraints. In addition, we use the same set of (fixed) denial
constraints described in the proof of Theorem 5.1(1), to ensure that truth assignments
in IX selected after copying from I ′X are valid.
(3) Copy functions. Three fixed copy functions are defined in ρ: (a) ρW : RW [EID,W]⇐
R′W [EID,W] imports values from I ′W to IW , (b) ρX : RX [X,V,K] ⇐ R′X [X,V,K] copies
values from I ′X to IX , and (c) ρb : Rb[EID, C] ⇐ R′b[EID, C] imports values from I ′b to Ib.
All these copy functions are initially empty. Let ρ = {ρW , ρX , ρb}.
(4) Query. We define Q in CQ as follows (omitting the EID attributes):
Q(v) = ∃~w ∃~x ∃~y ∃~z

(
QW (~w) ∧QX(~x) ∧QY (~y) ∧QZ(~z) ∧ Qψ(~w, ~x, ~y, ~z, v) ∧Rb(v)

)
.

Here QW (~w) is
∧
i∈[1,p]RW (i, wi), where wi ∈ W . It extracts from RW a truth assign-

ment µW for variables in W . Similarly, QX(~x) and QY (~y) extract a truth assignment
for variables of X and Y from RX and RY , respectively; and QZ(~z) generates all truth
assignments for variables of Z using R01. Along the same lines as the proof of Theo-
rem 5.1(1), Qψ(~w, ~x, ~y, ~z, v) is a CQ query that encodes the truth value of ¬ψ(W,X, Y, Z)
for a given truth assignment µW for W , µX for X, µY for Y and µZ for Z, such that
v = c if ψ is not satisfied by µW , µX , µY and µZ , and a distinct value a from c and d
otherwise. The query Qψ can be expressed in CQ in terms of R∨, R∧, R¬ and Rca.
One can readily verify that S is consistent, i.e., Mod(S) 6= ∅. In addition, the schemas
and denial constraints are fixed, i.e., they are independent of ϕ.
We next show that ϕ is true iff there exists an extension ρe of ρ such that ρe is currency
preserving for Q and |ρe| ≤ |ρ|+ k.
⇒ Suppose that ϕ is true. Then there exists a truth assignment µW for variables

in W such that ∀X∃Y ∀Zψ(µW , X, Y, Z) is true. We define an extension ρe of ρ, where
ρeW in ρe extends ρW by copying (i, 1) from I ′W to IW if µW (wi) = 1, and copying (i, 0)
if µW (wi) = 0, for each i ∈ [1, p]. The other copy functions of ρ remain unchanged
in ρe. Obviously |ρe| ≤ |ρ| + k. We show that ρe is currency preserving for Q. Let IeW
denote the extension of IW by ρeW , and Se denote the extension of S with ρeW . Observe
the following. (a) By the denial constraint ϕ2 defined on RW , this truth assignment is
selected in LST(IeW), no matter what consistent completion of IeW is considered. In other
words, the truth assignment for W remains fixed in all consistent completions of IeW .
(b) Along the same lines as the proof of Theorem 5.1(1), one can verify that the certain
current answer to Q w.r.t. Se is empty. Indeed, when LST(Icb) is {(1, d)}, the answer
to Q in such a completion of Se is empty, and hence so is the certain current query
answer of Q w.r.t. Se. (c) No matter how ρe is further extended, the certain current
answer to Q remains empty. Indeed, observe that in any completion of an extension of
Se, the answer to Q is nonempty only if for the truth assignments µW for W , µX for
X and µY for Y encoded in LST(IcW), LST(IcX) and LST(IcY), respectively, there exists a
truth assignment µZ for Z such that ψ is not satisfied. Since ϕ is true, given the truth
assignment µW encoded by LST(IcW) in Se, for any truth assignment µX for X that may
be copied from I ′X by extending ρ1, there exists a completion of IY that encodes a truth
assignment µY for Y , such that for all truth assignment µZ for Z, ψ is satisfied; hence,
the answer toQ is empty in this completion. In other words, the certain current answer
to Q is empty w.r.t. any extension of Se that is obtained by extending ρe. Therefore, we
can conclude that ρe is currency preserving for Q.
⇐ Conversely, suppose that ϕ is false. Assume for a contradiction that there exists an

extension ρe of ρ such that ρe is currency preserving for Q and moreover, |ρe| ≤ |ρ|+ k.
Then by the choice of the c, d values in I ′b and the K value in I ′X , ρe can extend neither
ρX nor ρb by copying data from I ′X or I ′b. As a result, the certain current answer to

Determining the Currency of Data 1:33

Q w.r.t. Se is empty, where Se denotes the extension of S with ρe. This is because
when LST(Icb) is {(1, d)}, the answer to Q in such a completion of Se is empty. Now
consider an extension ρ+ of ρe, which extends (a) ρW such that LST(IcW) encodes a
truth assignment µW for variables in W ; (b) ρb such that LST(Icb) is {(1, c)}, and (c) it
extends ρX to produce LST(IcX) that encodes a truth assignment µX for variables in X,
such that for any truth assignment µY for Y , there exists a truth assignment µZ for Z
that satisfies ¬ψ together with µW , µX and µY . This is possible because ϕ is false. Let
S+ be the extension of Se with ρ+. Then the certain current answers to Q w.r.t. S+ is
nonempty. Thus ρe is not currency preserving, contradicting the assumption above. 2

Combined complexity BCP for FO: We next show that BCP(FO) is PSPACE-hard even
when k is fixed. We prove this by reduction from the complement of Q3SAT. We refer to
the proof of Theorem 3.5(2) for the statement of the Q3SAT problem.
Given an instance ϕ of Q3SAT, we construct a specification S with copy functions ρ̄ and
a query Q. We show that ϕ is false iff there exists a currency preserving extension ρe

of ρ such that |ρe| ≤ |ρ|+ k.
(1) Temporal instances. The specification S consists of two data sources D and D′,
where D consists of two relation schemas R01(EID, A) and Rb(EID, B). The corre-
sponding instances are I01 = { (1, 0), (2,⊥) } and Ib = { (1, va) }, where ⊥ is a con-
stant different from 1, and va is an arbitrary constant. Furthermore, D′ consists
of the same relations R′01(EID, A) and R′b(EID, B) and the corresponding instances
are I ′01 = { (1, 0), (2, 1) } and I ′b = { (1, va), (1, vb) }. An initial partial currency order
(1, va) ≺B (1, vb) is specified on I ′b. We assume that 2 ≤ k and that vb has k + 1 bits.
(2) Copy functions. The specification S contains two copy functions ρ̄ = {ρ1, ρb} of
signature R01[EID, A] ⇐ R′01[EID, A] and Rb[EID, B] ⇐ R′b[EID, B], respectively. The
copy functions are defined as ρ1

(
(1, 0)

)
= (1, 0) and ρb

(
(1, va)

)
= (1, va).

(3) Denial constraints. We use a denial constraint on R01 to assure that for any tuples
t1 = (eid,⊥) and t2 = (eid, 1) in I01, t1 ≺A t2.
(4) Query. We use an FO query Q, similar to the one given in the proof of Theo-
rem 5.1(2). That is, for ϕ = P1X1 · · ·PmXmψ we define (omitting EID attributes):

Q(c) = P1~x1, . . . , Pm~xm
((
Q01 ∧QX1

(~x1) ∧ · · · ∧QXm
(~xm) ∧

Qψ(~x1, . . . , ~xm) ∧Rb(c)
)
∨ (R01(2, c) ∧ c = ⊥)

)
,

where Q01 = R01(1, 0) ∧ R01(2, 1) and QXi
leverages R01 to generate all truth assign-

ments for Xi. The query Qψ is the same as ψ. Note that k is fixed, i.e., it is independent
of ϕ. Observe that ρ̄ is not currency preserving since the certain answer of Q w.r.t. S
is {(⊥)} but this tuple is removed from the certain answer when ρ1 is extended to ρ′1
which copies (2, 1) from I ′01 into I01.
We show that the coding is a reduction from the complement of Q3SAT to BCP(FO).
⇐ First assume that ϕ is false. Then ρ can be extended into a currency preserving

copy function by letting ρ̄e = {ρ′1, ρb}, where ρ′1 is as previously defined. It is readily
verified that ρ̄e is a currency preserving copy function, since the answer to Q is empty,
no matter how the copy function is extended.
⇒ Conversely, assume that ϕ is true. By the choice of vb, the only possible extensions
ρ̄e of ρ such that |ρe| ≤ |ρ|+ k involve copying from I ′01 to I01. However, such extensions
are not currency preserving when ϕ is true. Indeed, there is an extension ρ′ of ρ that
also imports (1, vb) from I ′b to Ib, such that the certain answer to Q w.r.t. S is {(va)},
while the certain answer to Q w.r.t. S′ is {(vb)}. Here S′ is the extension of S by ρ′. Thus
there does not exist a currency preserving extension ρe of ρ such that |ρe| ≤ |ρ|+ k. 2

1:34 Wenfei Fan et al.

Data complexity BCP for CQ: We next show that BCP(CQ) is Σp3-hard when query Q
and denial constraints are fixed (for data complexity). We prove the lower bound
by reduction from the ∃∗∀∗∃∗3CNF problem (see the proof of Theorem 5.1 for the
statement of the ∃∗∀∗∃∗3CNF problem).

Given an instance ϕ = ∃X∀Y ∃Zψ(X,Y, Z) of the ∃∗∀∗∃∗3CNF problem, we define a
specification S that includes a collection ρ of copy functions, a positive number k and
a fixed query Q, i.e., Q does not depend on ϕ. We show that ϕ is true iff there exists an
extension ρe of ρ such that ρe is currency preserving for Q and |ρe| ≤ |ρ|+ k. We define
k to be 2n(2 log(n) + 2) bits, where n is the number of variables in X, and construct S
and Q as follows.
(1) Temporal instances. The specification S consists of two data sources D and
D′, where D consists of three relations specified by schemas RXY Z(EID, X, V,B),
RC(EID,CID,POS, L, V, C) and Rb(EID, C), and D′ consists of three relations specified
by R′X(EID, X, V,B), R′Y (EID, Y, V,B) and R′b(EID, C). Here the instance IXY Z of RXY Z
is used to represent truth assignments for X, Y and Z, which, as will be seen shortly,
are constrained by copy functions from instances I ′X and I ′Y of R′X and R′Y , respec-
tively. The instance IXY Z is similar to IXY shown in Fig. 5, except the following: (a)
for each variable in X ∪ Y ∪ Z, it contains two tuples with the same EID but different
V values 0 and 1; and (b) each tuple t carries an extra attribute B such that t[B] is a
constant 0 if t[X] is a variable in X, and t[B] is a constant K of k + 1 bits if t[X] is a
variable in Y ∪ Z. The presence of these tuples constrain the impact of extending copy
functions in that they do not add new tuples but instead only copy available currency
information. Instances I ′X and I ′Y are used to represent truth assignments for X and
Y , respectively. They are similar to I ′X shown in Fig. 5, with partial currency orders
defined on them, except that here each tuple s carries an extra attribute B with value
0 if s is in I ′X , and value K if s is in I ′Y . Since K has k + 1 bits, this prevents truth
assignments for Y to be copied when bounded copy functions are extended. Instances
Ib and I ′b are precisely the same as their counterparts shown in Fig. 5, but we assume
here that c and d are constants of at least k + 1 bits. We shall use Ib and I ′b to check
whether an extension of copy functions is currency preserving. As before, since c and
d have k + 1 bits, extensions of bounded copy functions cannot copy these constants.

Finally, the instance IC of RC is used to encode the negations of the clauses in
ψ along the same lines as the proof of Theorem 5.1(3). More specifically, for each
j ∈ [1, r], consider the negation Cj = ¯̀j

1 ∧ ¯̀j
2 ∧ ¯̀j

3 of clause Cj and denote by µj the
unique truth assignment for variables in Cj that satisfies Cj . Then, for each j ∈ [1, r],
we add the following three tuples to IC :

(eid, j, 1, z1, v1, c), (eid, j, 2, z2, v2, c), (eid, j, 3, z3, v3, c),

where zi = ¯̀j
i if ¯̀j

i is a variable, and zi = `ji otherwise. Moreover, vi is µj(¯̀j
i) if ¯̀j

i is a
variable, and it is µj(`ji) otherwise. Here eid is unique for each tuple. Except in I ′X , I

′
Y

and I ′b, partial currency orders are empty on these relations.
(2) Copy functions and denial constraints. We define three copy functions ρX :
RXY Z [X,V,B] ⇐ R′X [X,V,B], ρY : RXY Z [X,V,B] ⇐ R′Y [Y, V,B] and ρb : Rb[EID, C] ⇐
R′b[EID, C], each of which is initially empty. Let ρ̄ = {ρX , ρY , ρb}. Furthermore, we
constrain the possible extensions of ρ̄ by enforcing that each entity in all instances
has only two possible tuples, which can be expressed as fixed denial constraints.
(3) Query. We define the query Q in CQ as follows (omitting the EID attributes):

Q = ∃z1, z2, z3, v1, v2, v3, b1, b2, b3, j, w
(
RXY Z(z1, v1, b1) ∧RXY Z(z2, v2, b2) ∧

RXY Z(z3, v3, b3) ∧RC(j, 1, z1, v1, w) ∧RC(j, 2, z2, v2, w) ∧RC(j, 3, z3, v3, w) ∧Rb(w)
)
.

Determining the Currency of Data 1:35

This query is the same as its counterpart given in the proof of Theorem 5.1(3), except
that we use RXY Z here instead of RXY . As remarked there, for each Dc ∈ Mod(S),
LST(IcXY Z) encodes truth assignments µX , µY and µZ for X, Y and Z, respectively,
where IcXY Z is the completion of IXY Z in Dc. The query Q

(
LST(Dc)

)
returns a

non-empty set iff for µX , µY and µZ , at least one conjunctive clause Cj is satisfied.
It is easy to verify that S is consistent, i.e., Mod(S) 6= ∅. In addition, the query, schemas
and denial constraints are all fixed, i.e., they are independent of ϕ.

We next show that ϕ is true iff there exists an extension ρe of ρ such that ρe is
currency preserving for Q and |ρe| ≤ |ρ|+ k.
⇒ Assume that ϕ is true. Then there exists a truth assignment µX for variables in X

such that ∀Y ∃Zψ(µX , Y, Z) is true. We define an extension ρe = {ρeX , ρeY , ρeb} of ρ, where
ρeX extends ρX by copying (i, xi, 0, 0) and (i, xi, 1, 0) from I ′X to IXY Z if µX(xi) = 1, and
copying (n + i, xi, 0, 0) and (n + i, xi, 1, 0) if µX(xi) = 0, for each i ∈ [1, n]. The copy
functions ρeY and ρeb remain the same as ρY and ρb, respectively. It is easy to see that
|ρe| ≤ |ρ|+k. We next show that ρe is currency preserving forQ. Let IeXY Z denote the ex-
tension of IXY Z by ρeX , and Se denote the extension of S with ρe. Then as argued in the
proof of Theorem 5.1(3), the certain current answer toQ is empty w.r.t. Se. Observe that
for each consistent completion (IeXY Z)c of IeXY Z , LST((IeXY Z)c) encodes (a) a fixed truth
assignment µX for variables in X when (IeXY Z)c is restricted to X variables, which
remains unchanged in all consistent completions of IeXY Z because of the denial con-
straints defined on IXY Z , and (b) a truth assignment µY for Y and a truth assignment
µZ for Z, which vary in different completions of IeXY Z . Since ∃Zψ(µX , µY , Z) is true for
all µY of Y , no matter how ρeY and ρeb are extended by copying more data values, there
exists a completion of IXY Z such that it encodes a truth assignment for Y and a truth
assignment for Z, and moreover, ¬ψ is not satisfied, i.e., Q on the current instance of
this completion is empty. That is, the certain current answer to Q is empty w.r.t. any
extension of Se that is obtained by extending ρe. Hence ρe is currency preserving for Q.
⇐ Conversely, suppose that ϕ is false. Assume by contradiction that there exists an

extension ρe of ρ such that ρe is currency preserving for Q and |ρe| ≤ |ρ| + k. Then by
the choice of values c, d and K, ρe can neither copy truth assignments for Y from I ′Y
nor extend Ib by copying from I ′b. In other words, ρe can only extend ρX . Let Se denote
the extension of S with ρe. Then again as argued in the proof of Theorem 5.1(3), the
certain current answer to Q is empty w.r.t. Se. We show that, however, there exists
an extension of ρe such that the certain current answer to Q with that extension is
nonempty. Indeed, since ϕ is false, no matter how ρe extends ρX , there exists a truth
assignment µY for Y such that for all truth assignments µZ for Z, ¬ψ(µX , µY , µZ) is
true. We define an extension ρ+ of ρe in which the extension of ρX encodes a truth
assignment µX for X, the extension of ρY encodes a truth assignment µY for Y , such
that for all completions of currency orders on Z variables (i.e., µZ), ¬ψ(µX , µY , µZ)
is true. This is possible since ϕ is false. In addition, ρ+ extends ρb such that LST(Icb)
is {(1, c)}. Let S+ denote the extension of Se with ρ+. Then as argued in the proof of
Theorem 5.1(3), the certain current answers to Q w.r.t. S+ is nonempty. Therefore, ρe
is not currency preserving for Q. This contradicts the assumption above. 2

Upper bounds BCP: We next verify the upper bounds by providing a non-deterministic
algorithm that, given a consistent specification S with a collection ρ of copy functions,
a query Q and a positive number k as input, returns “yes” if there exists a currency
preserving extension ρe of ρ such that |ρe| ≤ |ρ|+k. Let D and D′ be the data sources in
S. The algorithm works as follows. The algorithm first checks whether S is consistent.
If not, it returns “no”. If S is consistent, it executes the following steps:

1:36 Wenfei Fan et al.

(1) Guess an extension ρe of ρ by copying additional data values of at most size k from
D′ to D.

(2) Construct the extension Se of S by ρe.
(3) Check whether ρe is currency preserving for Q, by invoking the algorithm for

CPP given in the proof of Theorem 5.1, with parameters Se and Q. Return “yes” if
that algorithm returns an affirmative answer. If not, reject the current guess and
repeat the process.

The algorithm shows that the combined complexity of BCP(∃FO+) is in Σp4. Indeed,
the initial step can be done in Σp2 by Theorem 3.1. Furthermore, step (2) is in PTIME
and as shown in the proof of Theorem 5.1, the oracle for checking CPP(∃FO+) is in Πp

3

for combined complexity. Thus the algorithm is in NPΠp
3 = Σp4 for the combined com-

plexity when LQ is ∃FO+. When LQ is FO, the oracle for checking CPP(FO) is in PSPACE
for combined complexity, as verified in the proof of Theorem 5.1. Hence BCP(FO) is in
PSPACE for combined complexity. Finally, for the data complexity, by Theorem 3.1 the
initial step can be done in NP and by Theorem 5.1, the oracle for checking CPP is in
Πp

2. Therefore, the algorithm is in NPΠp
2 = Σp3 for the data complexity.

6. TRACTABLE CASES
We next identify tractable cases for problems associated with reasoning about cur-
rency constraints (Section 3) and for problems related to copying (Section 4). More
specifically, we show that all problems become tractable in the absence of denial con-
straints and, where appropriate, when the query language is restricted to SP queries
as defined in Section 4. Observe that when no denial constraints are present, these
tractable cases cover practical scenarios in which reliable timestamps are provided for
part (or all) of the data. Indeed, such scenarios can be modeled without denial con-
straints but with initial currency orders in the temporal database instances.

As shown by Theorems 3.1 and 3.4, denial constraints make the analyses of CPS,
COP and DCIP intricate. Below we consider specifications with no denial constraints,
but containing partial currency orders and copy functions. The result below shows that
the absence of denial constraints indeed simplifies the analyses.

THEOREM 6.1. In the absence of denial constraints, CPS, COP and DCIP are in
PTIME.

PROOF. We provide PTIME algorithms for each of these problems.
CPS: Let S be a specification consisting of (1) a collection of temporal instances D(t,i) of
schema Ri, for i ∈ [1, s]; and (2) (possibly empty) copy functions ρ(j,i) from D(t,i) to D(t,j)

of a certain signature σ(ρ(j,i)) : Ri[~A]⇐ Rj [~B], where ~A consists of all attributes of Ri
(except possibly the EID-attribute) and ~B consists of the same number of corresponding
attributes in Rj . We provide a PTIME algorithm that decides whether S is consistent.
We use the following notations: For each i ∈ [1, s] and p ∈ [1, |Ri|], we denote by POi,p a
binary relation on tuples in D(t,i) that is used to encode a partial order on them. Simi-
larly, POupd

i,p denotes an updated version of POi,p. We always assume that these binary
relations are transitively closed (possibly at a cost of a quadratic time computation).
The algorithm performs the following steps:

(1) For i ∈ [1, s], p ∈ [1, |Ri|]
POi,p :={ (u, v) | D(t,i)(u) ∧D(t,i)(v) ∧ u ≺(i,p) v };

(2) Set cycle := false and change := true;
(3) While (change = true) and (cycle = false) do

Determining the Currency of Data 1:37

(a) For each i ∈ [1, s], j ∈ [1, s], i 6= j, p ∈ [1, |Ri|], q ∈ [1, |Rj |], and
for each ρ(j,i) : Ri[~A]⇐ Rj [~B] such that Ap is copied from Bq, do
i. POupd

i,p :=POi,p ∪ { (u, v) 6∈ POi,p | POj,q(ρ(j,i)(u), ρ(j,i)(v)) };
ii. POupd

j,q :=POj,q ∪ { (ρ(j,i)(u), ρ(j,i)(v)) | POi,p(u, v) };
(b) If there exist i ∈ [1, s] and p ∈ [1, |Ri|] such that POupd

i,p contains a cycle then
i. Set cycle = true;

(c) Else if exist i ∈ [1, s] and p ∈ [1, |Ri|] such that POi,p 6= POupd
i,p then

i. Set change = true;
ii. Let POi,p = POupd

i,p , for each i ∈ [1, s], p ∈ [1, |Ri|];
(d) Else set change = false;

(4) If cycle = false then return “yes” otherwise return “no”.

The algorithm starts by initializing POi,p with the initial partial currency order ≺(i,p)

(Step 1). Then, as long as no cycles are detected in POi,p and POupd
i,p differs from POi,p,

the algorithm updates POi,p with additional order information in Step 3. Here a cycle
means that both (u, v) and (v, u) belong to POi,p, for tuples u and v in D(t,i). There are
two ways in which the algorithm adds order information using a copy function ρ(j,i):
in Step 3(a)i, order information is transferred from POj,q to POi,p; and in Step 3(a)ii,
order information is transferred from POi,p to POj,q.

We next show the correctness of the algorithm, i.e., it returns “yes” iff S is consistent.
We denote by PO`i,p the relation computed after ` iterations. Furthermore, if no cycles
are detected and a fixed point has been reached (in Step 4), we denote by PO∞i,p the
final relation computed by the algorithm. If cycles were present, we let PO∞i,p = ∅.
⇒ Suppose that the algorithm returns “yes”. Then for all i ∈ [1, s] and p ∈ [1, |Ri|]

the relation PO∞i,p corresponds to a partial order on tuples in D(t,i), which is compati-
ble with the given partial order ≺(i,p). Indeed, by Step 1, ≺(i,p)⊆ PO∞i,p. Furthermore,
Step 3 only adds information to POi,p and since the final relation PO∞i,p is acyclic, no
contradicting order information has been added. Hence, PO∞i,p corresponds to a partial
order (recall that we assume the relations are transitively closed) and contains ≺(i,p).

We next show how a consistent completion Dc ∈ Mod(S) can be constructed from the
partial orders PO∞i,p. Let i ∈ [1, s], p ∈ [1, |Ri|]. Initially, we set ≺c(i,p)= PO∞i,p. Then, for
any two tuples u1, u2 in D(t,i) that represent the same entity, we consider the following
cases: (a) PO∞i,p(u1, u2); (a’) PO∞i,p(u2, u1); and (b) u1 and u2 are incomparable under
PO∞i,p. It suffices to treat only one of (a) or (a’), since those cases are symmetrical.

For case (a), we have already that u1 ≺c(i,p) u2. We show that this choice is not in conflict
with the copy functions. Suppose that the Ap-attribute values in tuples u1 and u2 are
respectively copied from theBq-attribute values in v1 and v2 in an instanceD(t,j). From
PO∞(i,p)(u1, u2) and Step 3(a)ii, it follows that PO∞j,q(v1, v2). Since PO∞j,q is acyclic, it is not
the case that PO∞j,q(v2, v1) is also reached.

For case (b), there exists a consistent completion in which u1 ≺c(i,p) u2, and another
consistent completion in which u2 ≺c(i,p) u1. Indeed, we can choose either u1 ≺c(i,p) u2

or u2 ≺c(i,p) u1, and then propagate this choice to tuples that are copied to or from u1

and u2. Since Step 3(a) in the algorithm propagates currency orders, tuples that are
copied to or from u1 and u2 cannot already be comparable themselves under some PO∞j,q
For instance, let ρ be such that ρ(u1) = v1 and ρ(u2) = v2, where ρ is a copy function

1:38 Wenfei Fan et al.

from Rj to Ri that copies Bq to Ap. Since u1 and u2 are incomparable under PO∞i,p, it
follows from Step 3(a)i that v1 and v2 are incomparable under PO∞j,q. In other words,
incomparable tuples can only be copied from incomparable tuples. We can therefore
gather all pairs of tuples (like v1 and v2) in different instances (depending on the copy
function) and select a consistent currency order for both u1, u2 and the collected pairs.
For instance, we can choose u1 ≺(i,p) u2 and v1 ≺(j,q) v2, and transitively close this
partial completion. We repeat this for any two such tuples u1 and u2 for which ≺c(i,p) is
still undefined. In this way, we obtain a consistent completion for D(i,p). We proceed in
a similar way for all i ∈ [1, s] and p ∈ [1, |Ri|] and obtain a completion Dc ∈ Mod(S).
⇐ Suppose that we have a consistent completion Dc ∈ Mod(S). Denote by ≺c(i,p) the

completed currency orders in Dc for D(t,i) and attribute Ap. We prove by induction on
increasing ` that for each `, it is the case that PO`i,p ⊆ {(u, v) | u, v ∈ D(t,i), u ≺c(i,p) v}.
Clearly, after Step 1, we have PO0

i,p = ≺(i,p) ⊆ ≺c(i,p). For the induction step, assume

that PO
(`−1)
i,p ⊆≺c(i,p) with ` ≥ 1. Assume by contradiction that PO`i,p *≺c(i,p). This im-

plies that either (a) a tuple (u, v) is added to PO`i,p in Step 3(a)i such that v ≺c(i,p) u;
or (b) a tuple (u′, v′) is added to PO`j,q in Step 3(a)ii such that v′ ≺c(j,q) u

′. In case (a),

we have PO
(`−1)
j,q (ρ(u), ρ(v)) and hence, by the induction hypothesis, ρ(u) ≺c(j,q) ρ(v).

Since the completion Dc satisfies the constraints imposed by the copy function, it fol-
lows u ≺c(i,p) v, a contradiction. Case (b) leads in the same way to a contradiction. We
conclude by contradiction that PO`i,p ⊆≺c(i,p). The algorithm always terminates due to
the fact that only order information is added and there is trivial upper bound for each
partial order. Hence PO∞i,p ⊆≺c(i,p). Since ≺c(i,p) is acyclic, the algorithm returns “yes”.

The algorithm is clearly in PTIME. Indeed, suppose that in each iteration of Step 3, a
single tuple is added, then one needs at most O(|S|2) time to add all possible tuples. 2

We next show the tractability of COP and DCIP. The PTIME algorithms for these
problems rely on the following property of the partial orders PO∞i,p, computed by the
previous algorithm for CPS. Let S be a specification as given in the proof for CPS above.

LEMMA 6.2. For each i ∈ [1, s], p ∈ [1, |Ri|], we have that PO∞i,p =
⋂

Dc∈Mod(S) ≺c(i,p).
That is, the partial orders PO∞i,p are certain in every completion and are maximal, i.e.,
no order information can be added without eliminating certain consistent completions.

PROOF. It is readily verified that the ⇒ direction in the previous proof im-
plies that

⋂
Dc∈Mod(S) ≺c(i,p)⊆ PO∞i,p, while the ⇐ direction implies that PO∞i,p ⊆⋂

Dc∈Mod(S) ≺c(i,p). From these, the desired equality follows.

COP: Let S be a specification as described in the proof for CPS above, and Ot be a
given currency order. We provide a PTIME algorithm that decides whether Ot is certain
for S. We know from Lemma 6.2 that for each i ∈ [1, s], and p ∈ [1, |Ri|], PO∞i,p =⋂

Dc∈Mod(S) ≺c(i,p). Given this we can conclude that Ot is certain iff ≺(i,p)⊆≺o(i,p)⊆ PO∞i,p,
where ≺o(i,p) represents the order for attribute Ap in Ri as specified by Ot. This can be
verified in PTIME, using the PTIME algorithm for computing the PO∞i,p relations. 2

DCIP: Let S be a specification as described in the proof for CPS above. We provide a
PTIME algorithm that decides whether S is deterministic for current instances.

Determining the Currency of Data 1:39

Let PO∞i,p be the partial orders returned by the PTIME algorithm for CPS. From
Lemma 6.2 one can easily verify that S is deterministic iff the following holds: for
each i ∈ [1, s], each p ∈ [1, |Ri|], and each entity identity eid occurring in D(t,i), the
restriction of the partial order PO∞i,p to tuples corresponding to eid has only sinks that
agree on the Ap attributes. Here a sink means a tuple that has no successors in the
partial order. The absence of successors allows us to find completions of the order in
which these tuples are put last. Hence, the determinacy condition simply asks for any
possible latest tuple to agree on all certain attributes. As a result, the PTIME algorithm
(1) computes for i ∈ [1, s] and p ∈ [1, |Ri|] the relations PO∞(i,p); and (2) verifies for each
eid ∈ D(t,i) whether PO∞i,p|EID=eid has only sinks that agree on the Ap attribute. If so,
then the algorithm returns “yes”, otherwise “no”. 2

Corollary 3.7 tells us that in the presence of denial constraints, CCQA does not be-
come easier for SP queries than for ∃FO+. We next show that for SP queries, the absence
of denial constraints simplifies the analysis. Indeed, for SP queries and without denial
constraints, CCQA is in PTIME.

PROPOSITION 6.3. For SP queries, CCQA(SP) is in PTIME in the absence of denial
constraints.

PROOF. Consider a specification S in which no denial constraints are defined, while
copy functions may be present. Let Q be an SP query. Recall from Section 3 that an SP
query is of the form Q(~x) = ∃e ~y

(
R(e, ~x, ~y) ∧ ψ

)
, where ψ is a conjunction of equality

atoms. Here R(EID, A1, . . . , An) is a relation schema in S. Let Dt = (D,≺A1
, . . . ,≺An

)
denote the corresponding temporal instance of R in S. Given S, Q and a tuple t, CCQA
is to determine whether t is a certain current answer to Q w.r.t. S, i.e., whether t ∈⋂

Dc∈Mod(S)Q
(
LST(Dc

t)
)
, where Dc

t denotes a completion of Dt in Dc.

We develop a PTIME algorithm for CCQA in this context as follows. The algorithm uses
the partial order relations defined in the proof of Theorem 6.1. In the following, E
denotes the set of all entities occurring in Dt.

(1) Compute the partial order relations PO∞` for each attribute A` in R.
(2) For each e ∈ E and each attribute A` of R, let S(e,A`) = {s[A`] | s is a sink in PO∞` }.

That is, S(e,A`) is the set of all possible most current values of theA`-attribute that
the entity e can have. We define

poss(e,A`) =

{
s[A`] if S(e,A`) = {s[A`]}
ce,` if |S(e,A`)| > 1,

where ce,` is a new constant. In other words, poss(e,A`) is either the unique most
current value of attribute A` of entity e, or a new constant ce,` indicating that
multiple distinct current values for A` and e exist. Let poss(e,S) be the tuple(
e, poss(e,A1), . . . , poss(e,An)

)
.

(3) Let poss(S) =
⋃
e∈E poss(e,S) and evaluate Q(poss(S)).

(4) Remove all tuples from Q
(
poss(S)

)
that contain a new constant (i.e., that contain a

constant ce,`). Denote the resulting set by Q̂
(
poss(S)

)
.

(5) Check whether t ∈ Q̂
(
poss(S)

)
. Return “yes” if so, and return “no” otherwise.

The algorithm is in PTIME. Indeed, Step 1 is in PTIME by Theorem 6.1. Step 3 is in
PTIME since Q is an SP query. All the other steps are trivially in PTIME.

1:40 Wenfei Fan et al.

We next show the correctness of the algorithm. Let Dc ∈ Mod(S) and Dc
t be the com-

pletion of Dt in Dc. Recall from the definition of current instances that LST(e,Dc
t) is a

tuple of the form (e, a1, . . . , an), where for each ` ∈ [1, n], a` is the most current value of
the entity e for the attribute A` relative to Dc

t . As shown in the proof of Theorem 6.1(3),
these current values are always witnessed by values that appear in sinks of PO∞` |EID=e.
Hence, poss(e,S), as defined in Step 2, indicates whether there exists a unique most
current tuple for e (in case that poss(e,S) does not contain any new constants) or not
(in case that a new constant appears in poss(e,S)). Indeed, in the absence of denial
constraints the currency orders among different attributes are independent and ev-
ery new constant contributes to a different current tuple. Clearly, when new constants
in poss(e,S) interact with the selection conditions in Q, Q(poss(e,S) = ∅, and thus
poss(e,S) does not contribute to the certain current answers to Q w.r.t. S. Let poss(S) =⋃
e∈E poss(e,S) and consider Q

(
poss(S)

)
(Step 3). Here for every e ∈ E, Q(poss(e,S)) is a

tuple that satisfies the selection conditions. However, apart from normal constants this
tuple may contain new constants. This implies that Q

(
poss(e,S)

)
may still represent

distinct possibilities, each of which realized by the query answer in some completion
of S. In order to compute the certain answers, one thus needs to eliminate the entities
that contain a new constant. In other words, we have to consider Q̂

(
poss(e,S)

)
(Step 4).

Finally, we need to verify whether t ∈ Q̂
(
poss(S)

)
as is done in Step 5.

We have seen in Theorems 5.1 and 5.3 that fixing denial constraints does not make
our lives easier when it comes to CPP or BCP. However, when denial constraints are
absent, these problems become tractable for SP queries.

THEOREM 6.4. When denial constraints are absent, for SP queries both the com-
bined complexity and the data complexity are in PTIME for CPP and BCP (when the
bound k on the size of additional data copied is fixed).

PROOF. We first develop a PTIME algorithm for CPP(SP), which will then be used to
show that BCP(SP) is also in PTIME, all in the absence of denial constraints.
CPP for SP: Consider a specification S and an SP queryQ(~x) = ∃e ~y(R(~x, ~y)∧ψ) for some
relation R in S, a subset of attributes ~x of R and a selection condition ψ. Recall that
for SP queries,

⋂
Dc∈Mod(S)Q

(
LST(Dc)

)
= Q̂

(
poss(S)

)
, where poss(S) encodes whether

or not a unique current tuple exists in all completions of the temporal instance Dt =
(D,≺A1 , . . . ,≺An) of schema R in S. We refer to the proof of Proposition 6.3 for the
definition of poss(S), Q̂

(
poss(S)

)
and its relation to certain current answers.

We provide a PTIME algorithm that checks whether there exists an extension ρ̄e of copy
functions ρ̄ in S, such that Q̂

(
poss(S)

)
6= Q̂

(
poss(Se)

)
, where Se is the extension of S by

ρ̄e. If such an extension exists, then the algorithm returns “no”; otherwise it returns
“yes”. More precisely, we check whether none of the following conditions is satisfied:

(C1) There exists a tuple r1 ∈ Q̂
(
poss(S)

)
for which there exists an extension ρ̄e of ρ̄

such that r1 6∈ Q̂
(
poss(Se)

)
. In other words, Q̂

(
poss(S)

)
6⊆ Q̂

(
poss(Se)

)
.

(C2) There exists an entity eid in Dt for which there exists an extension ρ̄e of ρ̄ such
that the tuple r2 = Q̂

(
poss(eid,Se)

)
does not belong to Q̂

(
poss(S)

)
. In other words,

Q̂
(
poss(Se)

)
6⊆ Q̂

(
poss(S)

)
.

Clearly, ρ̄ is currency preserving forQ if and only if neither (C1) nor (C2) holds. We next
provide PTIME procedures to check these conditions, from which the PTIME complexity
of CPP follows.

Determining the Currency of Data 1:41

For each tuple r1 in Q̂
(
poss(S)

)
, we first identify entities eid in Dt for which r1 =

Q̂
(
poss(eid,S)

)
. We collect these entities in a set E(r1). Observe that for condition (C1),

the only way that r1 can be removed from the query result for some extension Se of S is
when for each eid ∈ E(r1), the current tuple Q̂

(
poss(eid,Se)

)
is either empty or is a tuple

different from r1. By contrast, for condition (C2) it suffices to find one eid ∈ E(r1) that
gives rise to a distinct new tuple, not appearing anywhere else in the certain current
answers of Q w.r.t. S.
We use the following notation. Let E denote the set of distinct entity identifiers in Dt.
For each eid ∈ E and each attribute A` in R, we denote by LWit(eid, Dt, A`) the set
of tuples in Dt that contribute to the current tuple Q̂

(
poss(eid,S)

)
. More specifically,

LWit(eid, Dt, A`) consists of tuples in Dt that (i) are most current in some completion Dc
t

of Dt w.r.t. A` (and hence may contribute to the current tuple); (ii) satisfy the selection
condition ψ in Q (and thus contribute to the query result); and (iii) share the same
eid and A`-value in case A` belongs to the projected attributes and attributes involved
in the selection condition (and hence relate to same entity and have the same A`-
value as the current tuple). Observe that we can compute LWit(eid, Dt, A`) in PTIME by
leveraging the algorithm given in the proof of Theorem 6.1(1).
For each tuple r1 in the query result Q̂

(
poss(S)

)
and for each eid ∈ E(r1) we perform a

number of tests as follows.

(1) If we can extend ρ̄ to ρ̄e such that the tuple poss(eid,Se) contains an attribute A`
which is projected on or involved in the selection condition of Q and such that
its A`-value is a new constant, then Q̂

(
poss(eid,Se)

)
= ∅, and we are done for the

entity eid under consideration. The existence of such a copy function can be easily
checked. We distinguish between the following cases. Let A` be an attribute that
is either projected on or involved in the selection condition of Q.
— If there exist a tuple t1 ∈ LWit(eid, Dt, A`) and copy function ρ from D′t to Dt

such that ρ(t1) = s1, then we check whether D′t contains a tuple s2 that satisfies
(i) s1[B`] 6= s2[B`], i.e., its value in the B`-attribute in R′ (corresponding to A` in
R) is different from the current value; and (ii) s2 is incomparable with s1, i.e.,
neither s1 ≺B`

s2 nor s2 ≺B`
s1 is certain in D′t. If such s2 exists, then t2 ∈ De

t
with ρe(t2) = s2 will replace t1 in a completion of De

t . At the same time, t1 will
still be current in another completion (because they are incomparable). Hence,
poss(eid,Se) has a new constant in itsA`-attribute and hence Q̂

(
poss(eid,Se)

)
= ∅.

We call such s2 a spoiler. These can be detected by calling the PTIME algorithm
for COP (Theorem 6.1(2)) for each tuple in D′t. If this test is successful we flag
eid with (C1) and consider the next element in E(r1). Otherwise we continue.

— If there exists a tuple t1 ∈ LWit(eid, Dt, A`) for which a copy function ρ from D′t
to Dt is specified but ρ(t1) is undefined, we check whether D′t contains a tuple s2

that satisfies (i) s1[B`] 6= s2[B`]; and (ii) s′ ≺B`
s2 is certain in D′t for all tuples s′

that are copied to Dt. We can then import s2 to a new tuple t2 ∈ De
t with ρe(t2) =

s2. For the same reasons as above, the A`-attribute of poss(eid,Se) will contain a
new constant and hence Q̂

(
poss(eid,Se)

)
= ∅. If this test is successful we flag eid

with (C1) and consider the next element in E(r1). Otherwise we continue.
— If only empty copy functions are specified from D′t to Dt, we simply check

whether D′t contains a tuple s1 such that it has a different value in B` from the
current tuple. Then we can import it to a new tuple t1 ∈ De

t with ρe(t1) = s1.
Indeed, t1 will be incomparable with any of the tuples in LWit(eid, Dt, A`) and
therefore, it makes Q̂

(
poss(eid,Se)

)
= ∅. This can be checked again in PTIME.

1:42 Wenfei Fan et al.

If this test is successful we flag eid with (C1) and consider the next element in
E(r1). Otherwise we continue.

If none of the above tests is successful, it implies the following. Consider all tuples
s2 in D′t for which s2[B`] has a value that differs from the A`-attribute value of the
current tuple. Then, for each such s2 we can construct a tuple t2 (with ρe(t2) = s2)
via copying, such that tuple t2 is either more current or more stale (certain order)
than all t1 ∈ LWit(eid, Dt, A`). Indeed, otherwise this would lead to the existence of
a tuple in LWit(eid, Dt, A`) for which newly copied tuples can be both more current
and stale, i.e., a tuple as required by one of the above cases. As a consequence, if
none of the tests so far is successful, all extensions ρ̄e are such that poss(eid,Se))
contains normal constants in attributes projected out or involved in selections.

(2) We next look for extensions such that Q
(
poss(eid,Se)

)
is empty, or equivalently,

such that poss(eid,Se) does not satisfy the selection condition in Q. This happens
when a selection condition in Q of the form (i) σA=a or (ii) σA=A′ is violated. We
next show that both kinds of violations can be detected in PTIME.
— For (i) we simply need to find an extension such that poss(eid,Se) differs from
a in the A attribute. We do this as follows: we check whether for each tuple
t1 ∈ LWit(eid, Dt, A), there exists a copy function ρ from D′t to Dt and tuples
s1, s2 in D′t such that ρe(t1) = s1 and ρe(t2) = s2, and moreover, s2[B] has a value
different from a and s1 ≺B s2 is certain in D′t.

— For (ii) we need to find an extension such that poss(eid,Se) has different A and
A′ attributes. Along the same lines as in the previous case, we find tuples s1,
s2 and s3, such that s2[B] 6= s3[B′] and, as before, when s2 and s3 are copied to
tuples in De

t , they produce tuples t2 and t3 in De
t that are more current (certain)

than all the tuples in LWit(eid, Dt, A) and LWit(eid, Dt, A
′), respectively.

We flag eid with (C1) if it passes one of the above tests and continue with the next
entity in E(r1). Otherwise we continue.

(3) It remains to check whether any of the extensions gives rise to either a tuple
different from r1 (in which case r1 is eliminated for the current eid) or a tuple
different from any of other tuples in the query result (we know at this stage
that all extensions provide a tuple in the query result). For this, we only need
to consider attributes in the projection of Q. Indeed, any change in the other
attributes does not affect the query result. That is, we test whether there exists
an attribute A`, such that there exists a tuple s1 (as previously described) for
which t1, the tuple to which s1 is copied to, is more current than all tuples in
LWit(eid, Dt, A`). Furthermore, either its A` attribute is distinct from r1[A`] but
may still appear in some other result tuple, or its A`-attribute is different from any
other value in the query result. In the first case, we flag eid with (C1) and move to
the next entity in E(r1). In the second case we flag it with (C2) and conclude that
ρ̄ is not currency preserving since a new tuple is generated.

If all eid’s in E(r1) are flagged with (C1), then again ρ̄ is not currency preserving. If
not, we repeat the process for the next tuple in the query result. If at the end of this
process it has not been concluded that ρ̄ is not currency preserving, then this implies
that the query result is unchanged for any extension of the copy function. In other
words, ρ̄ is currency preserving. 2

BCP for SP: We show that BCP(SP) is in PTIME in the absence of denial constraints
and for fixed k. Consider a specification S and an SP query Q. The following PTIME
algorithm tests whether there exists an extension ρ̄e of ρ̄ with |ρ̄e| 6 |ρ̄| + k such

Determining the Currency of Data 1:43

Table II. Complexity of problems for reasoning about data currency (CPS, COP, DCIP)

CPS COP DCIP

Data complexity NP-complete (Th 3.1) coNP-complete (Th 3.4) coNP-complete (Th 3.4)
Combined complexity Σp

2-complete (Th 3.1) Πp
2-complete (Th 3.4) Πp

2-complete (Th 3.4)
Special case In the absence of denial constraints

Combined and data complexity PTIME (Th 6.1) PTIME (Th 6.1) PTIME (Th 6.1)

Table III. Complexity of problems for query answering and for determining currency preservation

Complexity CCQA(LQ) CPP(LQ) ECP(LQ) BCP(LQ)

Data coNP- Πp
2- O(1) Σp

3-
complete (Th 3.5) complete (Th 5.1) (Prop 5.2) complete (Th 5.3)

Combined (LQ)

CQ, UCQ, ∃FO+ Πp
2- Πp

3- O(1) Σp
4-

complete (Th 3.5) complete (Th 5.1) (Prop 5.2) complete (Th 5.3)

FO PSPACE- PSPACE- O(1) PSPACE-
complete (Th 3.5) complete (Th 5.1) (Prop 5.2) complete (Th 5.3)

Special case SP queries in the absence of denial constraints
Combined & data PTIME (Prop. 6.3) PTIME (Th 6.4) O(1) (Prop 5.2) PTIME (Th 6.4)

that ρ̄e is currency preserving for Q. Since k is fixed, there are only polynomial many
extensions ρ̄e of ρ̄. For each of those, we check whether ρ̄e is currency preserving for Q.
Hence, we need to call the above PTIME algorithm for CPP polynomially many times.
Therefore, BCP(SP) is in PTIME in this setting.

7. CONCLUSIONS

We have proposed a model to specify the currency of data in the absence of reliable
timestamps but in the presence of copy relationships. We have also introduced a no-
tion of currency preservation to assess copy functions for query answering. We have
identified seven fundamental problems associated with data currency and currency
preservation (CPS, COP, DCIP, CCQA(LQ), CPP(LQ), ECP(LQ) and BCP(LQ)). We have
provided an almost complete picture of the lower and upper bounds of these problems,
all matching, for their data complexity as well as combined complexity when LQ ranges
over a variety of query languages. These results are not only of theoretical interest in
their own right, but may also help practitioners distinguish current values from stale
data, answer queries with current data, and design proper copy functions to import
data from external sources.

The main complexity results are summarized in Tables II and III, annotated with
their corresponding theorems. One case we did not study is when queries are in SP,
in the presence of denial constraints. The results of Tables II and III do not carry over
to that setting, since the lower bound proofs for CCQA(LQ), CPP(LQ), ECP(LQ) and
BCP(LQ) use queries that involve joins, notably for data complexity when LQ is CQ.

The study of data currency is still preliminary. An open issue concerns generaliza-
tions of copy functions. To simplify the presentation we assume a single copy function
from one relation to another. Nonetheless we believe that all the results remain intact
when multiple such functions coexist. For currency-preserving copy functions, we as-
sume that the signatures “cover” all attributes (except EID) of the importing relation.
It is nontrivial to relax this requirement, however, since otherwise unknown values
need to be introduced for attributes whose value is not provided by the extended copy
functions. To this end it is helpful to identify syntactic characterizations of generic
currency-preserving copy functions. Another generalization of our model is to extend

1:44 Wenfei Fan et al.

current preservation for answering a class of queries rather than a single query. In-
deed, in practice currency preservation is often needed for multiple queries.

A second issue is about practical use of the study. As shown in Tables II and III, most
of the problems are intractable. To cope with the high complexity we plan to (a) identify
practical PTIME cases in various applications, (b) develop efficient heuristic algorithms
with certain performance guarantees, and (c) conduct incremental analysis when data
or copy functions are updated, which is expected to result in a lower complexity than
its batch counterpart when the area affected by the updates is small, as commonly
found in practice.

A third issue concerns the interaction between data consistency and data currency.
There is an intimate connection between these two central issues of data quality. In-
deed, identifying the current value of an entity helps resolve data inconsistencies, and
conversely, repairing data helps remove obsolete data. While these processes should
logically be unified, we are not aware of any previous work on this topic. A promising
approach to tackling this is to develop a uniform logical framework that captures stale
values and inconsistencies. This is possible since data inconsistencies are typically
detected and fixed by using integrity constraints such as denial constraints [Bertossi
2006; Chomicki 2007] and conditional functional dependencies [Fan et al. 2008], while
data currency is also specified in terms of denial constraints. These allow us to strike
on data currency and consistency in a unified process.

It should be remarked that the current value of an entity derived from a database
may still not be the true value of the entity. Indeed, information in a real-life database
is often incomplete, with missing tuples and missing values. The chances are that
when we derive the current value of an entity, the true values of some attributes of the
entity are not collected in the database at all. This highlights the need for studying
data currency and complete information together. We intend to tackle this issue by ex-
tending the logical framework aforementioned, to check information completeness rel-
ative to master data [Fan and Geerts 2011]. Indeed, relative information completeness
is also specified in terms of a class of containment constraints, which can be readily
incorporated into our framework. Nevertheless, the analyses of data currency in the
presence of incomplete and inconsistent data are expected to be more intricate.

Finally, we have so far assumed that for each entity, one can identify tuples pertain-
ing to it based on entity resolution [Elmagarmid et al. 2007]. It is possible that one can
unify the process of entity resolution and the process of determining current values.
Indeed, recent work has shown that temporal information helps improve the accuracy
of entity resolution [Li et al. 2011]. Conversely, accurate matches via entity resolution
help us determine the current values of entities. This issue deserves a full treatment.

REFERENCES
ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley.
BERTI-EQUILLE, L., SARMA, A. D., DONG, X., MARIAN, A., AND SRIVASTAVA, D. 2009. Sailing the informa-

tion ocean with awareness of currents: Discovery and application of source dependence. In Proceedings
of the 4th Biennial Conference on Innovative Data Systems Research (CIDR). Online Proceedings.

BERTOSSI, L. 2006. Consistent query answering in databases. SIGMOD Rec. 35, 2, 68–76.
BODIRSKY, M. AND KÁRA, J. 2010. The complexity of temporal constraint satisfaction problems. Journal of

the ACM 57, 2.
BUNEMAN, P., CHENEY, J., TAN, W., AND VANSUMMEREN, S. 2008. Curated databases. In Proceedings of

the 27th Symposium on Principles of Database Systems (PODS). 1–12.
CHENEY, J., CHITICARIU, L., AND TAN, W. C. 2009. Provenance in databases: Why, how, and where. Foun-

dations and Trends in Databases 1, 4, 379–474.
CHOMICKI, J. 2007. Consistent query answering: Five easy pieces. In Proceedings of the 11th International

Conference on Database Theory (ICDT). 1–17.

Determining the Currency of Data 1:45

CHOMICKI, J. AND TOMAN, D. 2005. Time in database systems. In Handbook of Temporal Reasoning in
Artificial Intelligence, M. Fisher, D. Gabbay, and L. Vila, Eds. Elsevier.

CLIFFORD, J., DYRESON, C. E., ISAKOWITZ, T., JENSEN, C. S., AND SNODGRASS, R. T. 1997. On the se-
mantics of “now” in databases. TODS 22, 2, 171–214.

CODD, E. F. 1979. Extending the database relational model to capture more meaning. TODS 4, 4, 397–434.
DEUTSCH, A., NASH, A., AND REMMEL, J. B. 2008. The chase revisited. In Proceedings of the 27th sympo-

sium on Principles of database systems (PODS). 149–158.
DONG, X., BERTI-EQUILLE, L., HU, Y., AND SRIVASTAVA, D. 2010. Global detection of complex copying

relationships between sources. PVLDB 3, 1, 1358–1369.
DONG, X., BERTI-EQUILLE, L., AND SRIVASTAVA, D. 2009. Truth discovery and copying detection in a

dynamic world. PVLDB 2, 1, 562–573.
DYRESON, C. E., JENSEN, C. S., AND SNODGRASS, R. T. 2009. Now in temporal databases. In Encyclopedia

of Database Systems, L. Liu and M. T. Özsu, Eds. Springer.
ECKERSON, W. W. 2002. Data quality and the bottom line: Achieving business success through a commit-

ment to high quality data. The Data Warehousing Institute.
ELMAGARMID, A. K., IPEIROTIS, P. G., AND VERYKIOS, V. S. 2007. Duplicate record detection: A survey.

TKDE 19, 1, 1–16.
FAN, W. AND GEERTS, F. 2011. Relative information completeness. TODS 35, 4.
FAN, W., GEERTS, F., JIA, X., AND KEMENTSIETSIDIS, A. 2008. Conditional functional dependencies for

capturing data inconsistencies. TODS 33, 1.
FAN, W., GEERTS, F., LI, J., AND XIONG, M. 2011. Discovering conditional functional dependencies.

TKDE 23, 5, 683–698.
FAN, W., GEERTS, F., AND WIJSEN, J. 2011. Determining the currency of data. In Proceedings of the 30th

symposium on Principles of database systems (PODS). 71–82.
GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman and Company.
GRAHNE, G. 1991. The Problem of Incomplete Information in Relational Databases. Springer.
GROHE, M. AND SCHWANDTNER, G. 2009. The complexity of datalog on linear orders. Logical Methods in

Computer Science 5, 1.
IMIELIŃSKI, T. AND LIPSKI, JR, W. 1984. Incomplete information in relational databases. Journal of the

ACM 31, 4, 761–791.
KNOWLEDGE INTEGRITY. 2003. Two sides to data decay. DM Review.
KOLAITIS, P. G. 2005. Schema mappings, data exchange, and metadata management. In Proceedings of the

24th Symposium on Principles of Database Systems (PODS). 61–75.
KOUBARAKIS, M. 1994. Database models for infinite and indefinite temporal information. Inf. Syst. 19, 2,

141–173.
KOUBARAKIS, M. 1997. The complexity of query evaluation in indefinite temporal constraint databases.

Theor. Comput. Sci. 171, 1-2, 25–60.
LENZERINI, M. 2002. Data integration: A theoretical perspective. In Proceedings of the 21st Symposium on

Principles of Database Systems (PODS). 233–246.
LI, P., DONG, X. L., MAURICIO, A., AND SRIVASTAVA, D. 2011. Linking temporal records. PVLDB 4, 11,

956–967.
PAPADIMITRIOU, C. H. 1994. Computational Complexity. Addison-Wesley.
SCHWALB, E. AND VILA, L. 1998. Temporal constraints: A survey. Constraints 3, 2-3, 129–149.
SNODGRASS, R. T. 1999. Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann.
STOCKMEYER, L. J. 1976. The polynomial-time hierarchy. Theor. Comput. Sci. 3, 1, 1–22.
VAN DER MEYDEN, R. 1997. The complexity of querying indefinite data about linearly ordered domains.

JCSS 54, 1, 113–135.
VAN DER MEYDEN, R. 1998. Logical approaches to incomplete information: A survey. In Logics for Databases

and Information Systems, J. Chomicki and G. Saake, Eds. Kluwer.
VIANU, V. 1987. Dynamic functional dependencies and database aging. Journal of the ACM 34, 1, 28–59.
ZHANG, H., DIAO, Y., AND IMMERMAN, N. 2010. Recognizing patterns in streams with imprecise times-

tamps. PVLDB 3, 1, 244–255.

