1,032 research outputs found

    Electronic compressibility and charge imbalance relaxation in cuprate superconductors

    Full text link
    In the material SmLa1−x_{1-x}Srx_xCuO4−δ_{4-\delta} with alternating intrinsic Josephson junctions we explain theoretically the relative amplitude of the two plasma peaks in transmission by taking into account the spatial dispersion of the Josephson Plasma Resonance in cc direction due to charge coupling. From this and the magnetic field dependence of the plasma peaks in the vortex solid and liquid states it is shown that the electronic compressibility of the CuO2_2 layers is consistent with a free electron value. Also the London penetration depth λab≈1100A˚\lambda_{ab} \approx 1100 {\rm \AA} near TcT_c can be determined. The voltage response in the IVIV-curve of a Bi2_2Sr2_2CaCu2_2O8_8 mesa due to microwave irradiation or current injection in a second mesa is related to the nonequilibrium charge imbalance of quasiparticles and Cooper pairs and from our experimental data the relaxation time ∼100ps\sim 100 {\rm ps} is obtained.Comment: 2 pages, 2 figures, phc-proc4-auth.cls, to be published in Physica C as a proceeding of M2S-HTSC Rio 200

    A Gait Rehabilitation Robot for the Training of Subtasks in Walking

    Get PDF
    Background: In the past decade, different gait rehabilitation robots have been developed. These robots concentrated on relearning gait by repeatedly enforcing a walking pattern for the whole leg or only for the foot. Such training might be less task specific as generally thought, because learning to walk is more complex than learning a position trajectory. We believe active participation of the patient in training and subdivision of the training in several subtasks leads to more comprehensive and functional training. Methods: Using a newly developed actuated exoskeleton (LOPES) in combination with a treadmill, we aimed to selectively and gently support specific subtasks of walking, like knee stabilization, lateral balance, and foot clearance. Foot clearance and knee stabilization subtask had been implemented with dedicated controllers and tested during walking with healthy subjects. Results: Foot clearance could be increased without disrupting the subject’s own initiated walking in the remainder of the gait cycle. During weight acceptation, the knee stabilization ensured by the exoskeleton while the subject relaxed his knee. The gentle control of the robot allowed a comfortable interaction between subject and robot. Conclusion: Selective support of subtasks seems to be a viable method of interaction with the patient to train his or her gait. In the near future, we will implement a complete set of gait subtasks, which makes all kinds of training interventions possible

    Identifying intrinsic and reflexive contributions to low-back stabilization

    Get PDF
    Motor control deficits have been suggested as potential cause and/or effect of a-specific chronic low-back pain and its recurrent behavior. Therefore, the goal of this study is to identify motor control in low-back stabilization by simultaneously quantifying the intrinsic and reflexive contributions. Upper body sway was evoked using continuous force perturbations at the trunk, while subjects performed a resist or relax task. Frequency response functions (FRFs) and coherences of the admittance (kinematics) and reflexes (sEMG) were obtained. In comparison with the relax task, the resist task resulted in a 61% decrease in admittance and a 73% increase in reflex gain below 1.1 Hz. Intrinsic and reflexive contributions were captured by a physiologically-based, neuromuscular model, including proprioceptive feedback from muscle spindles (position and velocity) and Golgi tendon organs (force). This model described on average 90% of the variance in kinematics and 39% of the variance in sEMG, while resulting parameter values were consistent over subjects

    Competing global and local completions in visual occlusion.

    Get PDF

    Human neck reflex adaptation towards the frequency content of anterior-posterior torso perturbations

    Get PDF
    Introduction: Reflex modulation has been extensively reported during posture maintenance in response to task instructions, and to perturbation type, bandwidth and amplitude. For the head-neck system the modulation of the vestibulocollic (VCR) and cervicocollic (CCR) reflexes is essential to maintain upright head posture during unexpected disturbances. Previous studies have estimated that VCR and CCR contribute equally during perturbations in the sagittal plane; however, their modulation with respect to the properties of the disturbance remains unclear. This study seeks to establish how neck reflexes are modulated during perturbations with varying properties and how each reflex contributes to stabilization behavior. We hypothesized that VCR and CCR (a) modulate according to the perturbation bandwidth, (b) are unaffected by the perturbation amplitude and (c) increase when performing a visual acuity task. Methods: Twelve subjects were perturbed via the torso while restrained in a seated position on a motion platform. The anterior-posterior perturbations varied in bandwidth from 0.3 Hz to a maximum frequency of 1.2, 2.0, 4.0 and 8.0 Hz, at three different amplitudes, and with eyes open and closed. Results: Head kinematics and neck muscle EMG demonstrated significant (P < 0.05) changes due to bandwidth, which through modeling and closed loop identification were attributed to modulation of VCR and CCR gains. VCR and CCR demonstrated dominant contributions to stabilization during high (8.0 Hz) and low bandwidth (1.2 and 2.0 Hz) perturbations respectively, and equivalent contributions during mid bandwidth perturbations (4.0 Hz). However both were attenuated when perturbations exceeded the systems natural frequency (~2-3 Hz). Amplitude had an effect only for the lowest amplitude relative to other conditions attributed to thresholding properties of the semicircular canals. With eyes closed reflex gains decreased, attributed to the reduced ability to discriminate self-motion without vision. Conclusions: To maintain head-upright posture adaptations of neck reflexes are observed to occur due to perturbation frequency and visual task conditions but not amplitude. Estimation of reflex contributions demonstrates that previous literature has underestimated the contribution of CCR, particularly during low frequency perturbations

    Field Dependence of the Josephson Plasma Resonance in Layered Superconductors with Alternating Junctions

    Full text link
    The Josephson plasma resonance in layered superconductors with alternating critical current densities is investigated in a low perpendicular magnetic field. In the vortex solid phase the current densities and the squared bare plasma frequencies decrease linearly with the magnetic field. Taking into account the coupling due to charge fluctuations on the layers, we extract from recent optical data for SmLa_{1-x} Sr_x CuO_{4-delta} the Josephson penetration length lambda_{ab} approximately 1100 A parallel to the layers at T=10 K.Comment: 5 pages, 6 eps-figures, final version with minor misprints correcte

    Gone with the wind: the impact of wind mass transfer on the orbital evolution of AGB binary systems

    Get PDF
    In low-mass binary systems, mass transfer is likely to occur via a slow and dense stellar wind when one of the stars is in the AGB phase. Observations show that many binaries that have undergone AGB mass transfer have orbital periods of 1-10 yr, at odds with the predictions of binary population synthesis models. We investigate the mass-accretion efficiency and angular-momentum loss via wind mass transfer in AGB binary systems. We use these quantities to predict the evolution of the orbit. We perform 3D hydrodynamical simulations of the stellar wind lost by an AGB star using the AMUSE framework. We approximate the thermal evolution of the gas by imposing a simple effective cooling balance and we vary the orbital separation and the velocity of the stellar wind. We find that for wind velocities v∞v_{\infty} larger than the relative orbital velocity of the system vorbv_\mathrm{orb} the flow is described by the Bondi-Hoyle-Lyttleton approximation and the angular-momentum loss is modest, leading to an expansion of the orbit. For low wind velocities an accretion disk is formed around the companion and the accretion efficiency as well as the angular-momentum loss are enhanced, implying that the orbit will shrink. We find that the transfer of angular momentum from the orbit to the outflowing gas occurs within a few orbital separations from the center of mass of the binary. Our results suggest that the orbital evolution of AGB binaries can be predicted as a function of the ratio v∞/vorbv_{\infty}/v_\mathrm{orb}. Our results can provide insight into the puzzling orbital periods of post-AGB binaries and suggest that the number of stars entering into the common-envelope phase will increase. The latter can have significant implications for the expected formation rates of the end products of low-mass binary evolution, such as cataclysmic binaries, type Ia supernova and double white-dwarf mergers. [ABRIDGED]Comment: Accepted for publication in A&A, 17 pages, 11 figures, 3 tables. Abstract abridged due to arXiv requirement
    • …
    corecore