15 research outputs found

    The Emerging Human Pathogen Photorhabdus asymbiotica Is a Facultative Intracellular Bacterium and Induces Apoptosis of Macrophage-Like Cellsâ–ż

    No full text
    Photorhabdus species are gram-negative entomopathogenic bacteria of the family Enterobacteriaceae. Among the different members of the genus, one species, Photorhabdus asymbiotica, is a pathogen of both insects and humans. The pathogenicity mechanisms of this bacterium are unknown. Here we show that P. asymbiotica is a facultative intracellular pathogen that is able to replicate inside human macrophage-like cells. Furthermore, P. asymbiotica was shown for the first time in an intracellular location after insect infection. We also demonstrated that among Australian and American clinical isolates, only the Australian strains were able to invade nonphagocytic human cells. In cell culture infection experiments, Australian clinical isolates as well as cell-free bacterial culture supernatant induced strong apoptosis of a macrophage cell line at 6 h postinfection. American isolates also induced cellular death, but much later than that induced by Australian ones. Mammalian cultured cells analyzed for key features of apoptosis displayed apoptotic nuclear morphology, activation of the initiator caspases 8 and 9 and the executioner caspases 3 and 7, and poly(ADP-ribose) polymerase proteolysis, suggesting activation of both the intrinsic and extrinsic apoptotic pathways

    Chlamydial IFN-Îł immune evasion is linked to host infection tropism

    No full text
    Chlamydiae are obligate intracellular pathogens that can exhibit a broad host range in infection tropism despite maintaining near genomic identity. Here, we have investigated the molecular basis for this unique host-pathogen relationship. We show that human and murine chlamydial infection tropism is linked to unique host and pathogen genes that have coevolved in response to host immunity. This intimate host-pathogen niche revolves around a restricted repertoire of host species-specific IFN-Îł-mediated effector responses and chlamydial virulence factors capable of inhibiting these effector mechanisms. In human epithelial cells, IFN-Îł induces indoleamine 2,3-dioxygenase expression that inhibits chlamydial growth by depleting host tryptophan pools. Human chlamydial strains, but not the mouse strain, avoid this response by the production of tryptophan synthase that rescues them from tryptophan starvation. Conversely, in murine epithelial cells IFN-Îł induces expression of p47 GTPases, but not indoleamine 2,3-dioxygenase. One of these p47 GTPases (Iigp1) was shown by small interfering RNA silencing experiments to specifically inhibit human strains, but not the mouse strain. Like human strains and their host cells, the murine strain has coevolved with its murine host by producing a large toxin possessing YopT homology, possibly to circumvent host GTPases. Collectively, our findings show chlamydial host infection tropism is determined by IFN-Îł-mediated immunity

    Crystal structure of Yersinia enterocolitica type III secretion chaperone SycT

    No full text
    Pathogenic Yersinia species use a type III secretion (TTS) system to deliver a number of cytotoxic effector proteins directly into the mammalian host cell. To ensure effective translocation, several such effector proteins transiently bind to specific chaperones in the bacterial cytoplasm. Correspondingly, SycT is the chaperone of YopT, a cysteine protease that cleaves the membrane-anchor of Rho-GTPases in the host. We have analyzed the complex between YopT and SycT and determined the structure of SycT in three crystal forms. Biochemical studies indicate a stoichometric effector/chaperone ratio of 1:2 and the chaperone-binding site contains at least residues 52–103 of YopT. The crystal structures reveal a SycT homodimer with an overall fold similar to that of other TTS effector chaperones. In contrast to the canonical five-stranded anti-parallel β-sheet flanked by three α-helices, SycT lacks the dimerization α-helix and has an additional β-strand capable of undergoing a conformational change. The dimer interface consists of two β-strands and the connecting loops. Two hydrophobic patches involved in effector binding in other TTS effector chaperones are also found in SycT. The structural similarity of SycT to other chaperones and the spatial conservation of effector-binding sites support the idea that TTS effector chaperones form a single functional and structural group

    Molecular and cell biology aspects of plague

    No full text
    A 70-kb virulence plasmid (sometimes called pYV) enables Yersinia spp. to survive and multiply in the lymphoid tissues of their host. It encodes the Yop virulon, a system consisting of secreted proteins called Yops and their dedicated type III secretion apparatus called Ysc. The Ysc apparatus forms a channel composed of 29 proteins. Of these, 10 have counterparts in almost every type III system. Secretion of some Yops requires the assistance, in the bacterial cytosol, of small individual chaperones called the Syc proteins. These chaperones act as bodyguards or secretion pilots for their partner Yop. Yop proteins fall into two categories. Some are intracellular effectors, whereas the others are “translocators” needed to deliver the effectors across the eukaryotic plasma membrane, into eukaryotic cells. The translocators (YopB, YopD, LcrV) form a pore of 16–23 Å in the eukaryotic cell plasma membrane. The effector Yops are YopE, YopH, YpkA/YopO, YopP/YopJ, YopM, and YopT. YopH is a powerful phosphotyrosine phosphatase playing an antiphagocytic role by dephosphorylating several focal adhesion proteins. YopE and YopT contribute to antiphagocytic effects by inactivating GTPases controlling cytoskeleton dynamics. YopP/YopJ plays an anti-inflammatory role by preventing the activation of the transcription factor NF-κB. It also induces rapid apoptosis of macrophages. Less is known about the role of the phosphoserine kinase YopO/YpkA and YopM

    Conformational Switch and Role of Phosphorylation in PAK Activation

    No full text
    p21-activated protein kinases (PAKs) are involved in signal transduction processes initiating a variety of biological responses. They become activated by interaction with Rho-type small GTP-binding proteins Rac and Cdc42 in the GTP-bound conformation, thereby relieving the inhibition of the regulatory domain (RD) on the catalytic domain (CD). Here we report on the mechanism of activation and show that proteolytic digestion of PAK produces a heterodimeric RD-CD complex consisting of a regulatory fragment (residues 57 to 200) and a catalytic fragment (residues 201 to 491), which is active in the absence of Cdc42. Cdc42-GppNHp binds with low affinity (K(d) 0.6 ÎĽM) to intact kinase, whereas the affinity to the isolated regulatory fragment is much higher (K(d) 18 nM), suggesting that the difference in binding energy is used for the conformational change leading to activation. The full-length kinase, the isolated RD, and surprisingly also their complexes with Cdc42 behave as dimers on a gel filtration column. Cdc42-GppNHp interaction with the RD-CD complex is also of low affinity and does not dissociate the RD from the CD. After autophosphorylation of the kinase domain, Cdc42 binds with high (14 nM) affinity and dissociates the RD-CD complex. Assuming that the RD-CD complex mimics the interaction in native PAK, this indicates that the small G protein may not simply release the RD from the CD. It acts in a more subtle allosteric control mechanism to induce autophosphorylation, which in turn induces the release of the RD and thus full activation
    corecore