13 research outputs found

    The absolute position of a resonance peak

    Full text link
    It is common practice in scattering theory to correlate between the position of a resonance peak in the cross section and the real part of a complex energy of a pole of the scattering amplitude. In this work we show that the resonance peak position appears at the absolute value of the pole's complex energy rather than its real part. We further demonstrate that a local theory of resonances can still be used even in cases previously thought impossible

    Inner products of resonance solutions in 1-D quantum barriers

    Get PDF
    The properties of a prescription for the inner products of the resonance (Gamow states), scattering (Dirac kets), and bound states for 1-dimensional quantum barriers are worked out. The divergent asypmtotic behaviour of the Gamow states is regularized using a Gaussian convergence factor first introduced by Zel'dovich. With this prescription, most of these states (with discrete complex energies) are found to be orthogonal to each other, to the bound states, and to the Dirac kets, except when they are neighbors, in which case the inner product is divergent. Therefore, as it happens for the continuum scattering states, the norm of the resonant ones remains non-calculable. Thus, they exhibit properties half way between the (continuum real) Dirac-delta orthogonality and the (discrete real) Kronecker-delta orthogonality of the bound states.Comment: 13 pages, 2 figure

    Resonance solutions of the nonlinear Schr\"odinger equation in an open double-well potential

    Full text link
    The resonance states and the decay dynamics of the nonlinear Schr\"odinger (or Gross-Pitaevskii) equation are studied for a simple, however flexible model system, the double delta-shell potential. This model allows analytical solutions and provides insight into the influence of the nonlinearity on the decay dynamics. The bifurcation scenario of the resonance states is discussed, as well as their dynamical stability properties. A discrete approximation using a biorthogonal basis is suggested which allows an accurate description even for only two basis states in terms of a nonlinear, nonhermitian matrix problem.Comment: 21 pages, 14 figure

    Multi-barrier resonant tunneling for the one-dimensional nonlinear Schr\"odinger Equation

    Full text link
    For the stationary one-dimensional nonlinear Schr\"odinger equation (or Gross-Pitaevskii equation) nonlinear resonant transmission through a finite number of equidistant identical barriers is studied using a (semi-) analytical approach. In addition to the occurrence of bistable transmission peaks known from nonlinear resonant transmission through a single quantum well (respectively a double barrier) complicated (looped) structures are observed in the transmission coefficient which can be identified as the result of symmetry breaking similar to the emergence of self-trapping states in double well potentials. Furthermore it is shown that these results are well reproduced by a nonlinear oscillator model based on a small number of resonance eigenfunctions of the corresponding linear system.Comment: 22 pages, 11 figure
    corecore