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Abstract
The properties of a prescription for the inner products of resonance (Gamow
states), scattering (Dirac kets) and bound states for one-dimensional quantum
barriers are worked out. The divergent asypmtotic behaviour of the Gamow
states is regularized using a Gaussian convergence factor first introduced by
Zel’dovich. With this prescription, most of these states (with discrete complex
energies) are found to be orthogonal to each other and to the Dirac kets,
except when they are neighbours, in which case the inner product is divergent.
Therefore, as it happens for the continuum scattering states, the norm of the
resonant ones remains non-calculable. Thus, they exhibit properties halfway
between the (continuum real) Dirac-δ orthogonality and the (discrete real)
Kronecker-δ orthogonality of the bound states.

PACS number: 03.65.Nk

1. Introduction

Resonances in quantum mechanics describe states evolving non-unitarily [1], both decaying
and building ones, and have found applications in the study of nuclear reactions. As such,
they have been more often studied in the case of spherical nuclear potentials, mainly of the
‘shell-model’ type and restricting the analysis to the radial s-wave equation. Albeit for obvious
unessential differences in the boundary conditions, the physical picture is similar to the case
of the one-dimensional barriers we are considering, more akin to condensed matter systems
or ion-trapping devices.  There is ongoing interest and work still in progress on the physical
interpretation of resonances [2].

Resonant solutions to the Schrödinger equation occur in any simple potential barrier
with a compact support, the plain square barrier being the most simple, tractable and fully
representative example, and they are more often found in alternative specialized expansions
of the Green’s function and other physically relevant objects. They correspond to complex
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energies and momenta, which place them out of the familiar realm of Hermitian operators in
Hilbert spaces, where a wealth of well-known mathematical properties is available. Though
having been first studied in early times [3, 4], the non-trivial mathematical properties of
resonances have spurred a long lasting investigation effort. This paper focuses on some still
debatable issues regarding the norm, inner products and completeness properties of resonant
states.

The issue of the completeness arises in its simplest form as soon as one attempts, for
instance, to expand the identity in terms of projectors on the bound (if any) |φi〉, resonance
|zn〉 and background (‘scattering’ complex energy) |z〉 states, namely

I =
∑

i

|φi〉〈φi | +
∑

n

|zn〉〈zn| +
∮

dz |z〉〈z|. (1)

where the second sum may involve a variable number and type of resonances. Such an
expansion is, in principle, attainable by deforming, in the complex (two-sheet) plane [5], the
continuum real energy integration occurring in the traditional expansion in terms of bound
and scattering states:

I =
∑

i

|φi〉〈φi | +
∫

dE |E〉〈E| (2)

following the lines of the proof of (2), as given for instance by [6]. In particular cases, a
complete expansion in terms of resonances (plus bound states) can be found, as for example
for continuum wavefunctions (or the scattering solutions) within a finite region including
the support of the barrier [7–9]. This has direct application for instance in time-dependent
problems, as in the time evolution of quantum decay [10]. In the general case, covering
the whole space, directly testing any resonance expansion like (1) against the idempotence
requirement I 2 = I , needs the computation of the inner products of all these families of states
with each other. We aim to perform some steps in this direction.

The difficulty stems from the divergent asymptotic behaviour of the resonance solutions,
which leads to infinite norms and seemingly divergent and hard to calculate inner products,
and has given rise to a variety of proposals to circumvent it. These proposals adopt different
prescriptions to render finite the space integrals involved in these products and in general
matrix elements. We may quote analytical continuations of the resonant solutions in the
complex momentum plane [11], the ‘external complex scaling’ [12] of the space-coordinate
integration variable, and the introduction of convergence factors in the integrals.

In this paper we shall adopt a Gaussian convergence factor, first introduced by Zel’dovich
[13] and used by others [5], with which a limit can be worked out yielding novel non-trivial
results; in fact, we recover the result of the integrals that were already well defined, and extend
the finite result to a newer region of the complex momentum plane. The procedure, which
avoids relying on analytical continuation arguments, leads to a prescription for the definition of
the inner products, yielding a specific set of orthogonality relations. Our results are derived for
a general potential with finite support of which the bound and resonant poles of the S-matrix
are known.

The usual inner product in the Hilbert space, involving the complex conjugate of one of
the wavefunctions, is defined so as to have real probability densities and norms for the general
wavefunctions. However when dealing with resonant solutions, a symmetrical inner product
is involved in the convolution of the Green’s function with initial states (superpositions of
scattering states), and is associated with a complex ‘norm’ [14], so we explore the properties
of both alternative definitions.

The plan of the paper is the following: In section 2, we briefly review the relevant features
of the resonances while fixing some notation and stressing the relationships between proper,
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anti-, outgoing and incoming resonant solutions. In section 3, we calculate the standard
inner product of resonant states between themselves and with the bound and the scattering
states. In section 4, we introduce the symmetrical inner product, and give the result for the
resonant–resonant and resonant–scattering product. Then in section 5, we outline in some
detail the regularization prescription adopted, based on a Gaussian factor, and show how the
(either finite or divergent) results are recovered in the non-regularized limit. For comparison,
we comment here on some other prescriptions found in the literature. Finally, the conclusions
are drawn in section 6. The crucial integral formulae are derived in the appendix.

2. The resonant solutions

We consider the 1D time-independent Schrödinger equation[
∂2

∂x2
+ p2 − 2mV (x)

]
ψ(x, p) = 0 (3)

where we use units such that h̄ = 1.
For a cut-off potential V (x) describing a general barrier with support in the compact

interval [0,L], besides the usual scattering in and out solutions for continuous real energy
E = p2/2m > 0 and possible bound states (discrete real Ei < 0), one has resonant solutions
(Gamow states) satisfying the homogeneous outgoing resonant boundary conditions (ORBCs),

∂xψ|x=0= −ipψ(0), ∂xψ|x=L= ipψ(L). (4)

The solutions un(x), called proper (outgoing) resonances, exist for a denumerable set of
isolated values pn of p (with corresponding energies zn = p2

n/2m) lying inside the octants
close to the real axis (i.e. |Re pn| > |Im pn|) in the lower half complex plane (i.e. Im pn < 0),
and occupy symmetrical positions with respect to the imaginary axis (see figure 1). It is
customary to label them as pn (n = 1, 2, . . .) when Re pn > 0 and as p−n ≡ −p∗

n their
symmetric ones, sometimes called anti-resonances. In the case of a simple square barrier, the
real parts Re pn tend to be spaced regularly for increasing |n|, while | Im pn| grows slowly [1].

RBCs with reversed sign of p in (4) correspond to incoming solutions ũn(x), and
the momenta p̃n ≡ −pn = p∗

−n lie in the upper half complex plane. We denote with
ũn(x) = un(p̃n; x) these solutions and with |z̃n〉 the corresponding states. Note that the
corresponding energies z̃n lie in the first Riemann sheet. For real potentials V (x), the complex
conjugates u∗

n(x) of the outgoing resonances correspond instead to yet outgoing solutions with
mirror momenta −p∗

n, and energies z∗
n in the second Riemann sheet, so that u∗

n(x) = u−n(x)

and z∗
n = z−n. For the same reason, the complex conjugates of the incoming resonances are

again incoming solutions. In the literature, u∗
n(x) have been easily mistaken for an incoming

solution.
The ORBCs are equivalent to imposing the asymptotic form

un(x) =
{
Rn e−ipnx, x � 0
Tn eipnx, x � L

(5)

where the amplitudes Rn and Tn differ by a phase and are defined up to a global arbitrary factor.
An immediate consequence is that the norm

‖un‖ ≡ 〈zn|zn〉 =
∫ +∞

−∞
dx u∗

n(x)un(x) ≈
∫ +∞

−∞
dx exp 2|x||Im pn| = ∞ (6)

is even more divergent than for the Dirac states ‖ψ‖ ≡ 〈E|E〉 = δ(0) ≈ ∫ +∞
−∞ dx = ∞,

causing both kinds of states not to belong to L2.
This fact, as opposite to the finite norm of the bound states, has been addressed in the

framework of rigged Hilbert spaces (RHS) [15, 16] along the same lines adopted for the Dirac
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kets. In RHS, these states are interpreted just as linear functionals on more restricted spaces
(Hilbert or Schwartz) in which an inner product is properly defined, but nevertheless it is
customary to consider, in a somewhat relaxed sense, inner products of the Dirac kets which
have a meaning only as distributions, namely 〈E|E′〉 = δ(E − E′). However, when one tries
to give an answer of this type for the resonance states, the inner products

〈zn|zm〉 =
∫ +∞

−∞
dx u∗

n(x)um(x) (7)

may be expected to be generally divergent as well, because of the exponential growth for large
x. For this reason, their actual calculation has spurred the adoption of a number of elaborated
strategies.

The same difficulties affect the inner products 〈zn|E〉 between resonant and scattering
states and, more generally, between resonant states and wave packets. This is an important
issue as long as the analytical calculation of, for instance, the time evolution of an initial state
impinging on a barrier [9], or of the shutter problem [17], contains sums of terms with poles
in the resonant momenta. For the (either Laplace or Fourier) transform of the time-dependent
Green’s function, one has [14]

G(x, x ′;p) =
∑

n

1

Nn

1

2pn

un(x)un(x
′)

p − pn

+ regular terms. (8)

The interpretation of the pole terms as (transient) excitations of the resonant eigenmodes of
the system requires the knowledge of the projection of the initial state on the resonant ones.
The dimensionless normalization factor in (8) is [14, 17]

Nn = i
u2

n(a) + u2
n(b)

2pn

+
∫ b

a

dx u2
n(x), (9)

where a = 0 and b = L, which is a sort of (complex) ‘norm’. Note that, when applied to
wavefunctions ψ(x) ∈ L2, it reminds the usual (real) norm in the Hilbert space albeit for
replacing the squares by the square modulus and letting a and b recede respectively to −∞
and to +∞. For the resonant solutions, however, Nn diverges in this limit.

3. Inner products

In this section, we shall calculate the usual inner products 〈zn|zm〉 of resonant states with
themselves (7) and their mixed products 〈zn|E〉 and 〈φi |zn〉 with the scattering and bound states
respectively. The method also leads to the usual inner products 〈φi |φj 〉 = δij , 〈φi |E〉 = 0 and
〈E|E′〉 = δ(E − E′).

3.1. Resonances

The space integral giving the inner product of two resonant solutions can be split in three
sectors:

〈zn|zm〉 ≡
∫ +∞

−∞
dx u∗

n(x)um(x)

= R∗
nRm

∫ 0

−∞
dx ei(p∗

n−pm)x +
∫ L

0
dx u∗

num + T ∗
n Tm

∫ ∞

L

dx e−i(p∗
n−pm)x

= (R∗
nRm + T ∗

n Tm)

∫ ∞

0
dx e−i(p∗

n−pm)x +
∫ L

0
dx u∗

num − T ∗
n Tm

∫ L

0
dx e−i(p∗

n−pm)x.

(10)
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Figure 1. An example of orthogonality between resonant states: 〈z2|zn〉 = 0 for n < 0 and n > 4,
while 〈z2|zm〉 = ∞ for 0 < m � 4.

The ORBCs in 0 and L, together with their complex conjugates, allow us to express the
finite integral

∫ L

0 dx u∗
num in terms of the amplitudes R and T outside the barrier, regardless of

the explicit form of un(x) inside the barrier and hence of the particular form of the potential.
The procedure uses the Schrödinger operator O ≡ −2mH = ∂2

x − 2mV and integration by
parts to obtain

(
p∗2

n − p2
m

) ∫ L

0
dx u∗

num = 2m(z∗
n − zm)

∫ L

0
dx u∗

num

=
∫ L

0
dx u∗

n(x)(
−→
O − ←−

O )um(x) = W [u∗
n, um]L0 (11)

where W [φ ,ψ] ≡ φ∂xψ − ψ∂xφ is the Wronskian of the functions φ and ψ , so that∫ L

0
dx u∗

num = i

p∗
n − pm

(T ∗
n Tm e−i(p∗

n−pm)L + R∗
nRm). (12)

Then cancellations occur such that

〈zn|zm〉 = (R∗
nRm + T ∗

n Tm)

(∫ ∞

0
dx e−i(p∗

n−pm)x +
i

p∗
n − pm

)
. (13)

Now the point is the calculation of the integral in (13). We adopt the limit λ → 0 in (29)
as a prescription for the result of (13) and defer the discussion of our scheme to section 5 and
to the appendix.

With this prescription, we finally obtain

〈zn|zm〉 =
{

0, −π

4
< arg(pm − p∗

n) < 5
π

4
∞, otherwise.

(14)

In particular 〈zn|zn〉 = ∞, as expected.
For each resonant state |zn〉, the result (14) defines a ‘neighbourhood of divergence’ so

that |zn〉 is orthogonal to any other |zm〉, the momentum pm of which lies outside a ‘cone of
divergence’ with the apex in p∗

n, and gives a divergent inner product if pm lies inside this cone
(figure 1).

5
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Figure 2. Two examples of orthogonality between resonant and scattering states: 〈z2|E〉 = 0 (∞)

when p ≡ √
2mE ⊂ R+ lies out of (inside) the interval [A2, B2], and 〈Ec|zn〉 = 0 (∞) when

n �= 3, 4 (n = 3, 4), respectively.

3.2. Resonant and scattering states

The in and out scattering solutions obey a single differential BC at one of the points x = 0
or x = L. For instance, a right-moving in state obeys only the second BC in (4) with p > 0.
This is equivalent to imposing the asymptotic form

ψ+
r (x) =

{
eipx + R(p) e−ipx, x � 0
T (p) eipx, x � L.

(15)

For instance, the combined BCs of the resonant and of the (p > 0, in) scattering solutions
similarly lead to

〈zn|E〉 =
∫ ∞

0
dx (R∗

n e−i(p∗
n+p)x + (R∗

nR + T ∗
n T ) e−i(p∗

n−p)x)

+
i

p∗
n − p

(R∗
nR + T ∗

n T ) +
i

p∗
n + p

R∗
n. (16)

With p > 0, for n > 0 we always have −π
4 < arg(p∗

n + p) < 5π
4 , so that

〈zn|E〉 = (R∗
nR + T ∗

n T )

(∫ ∞

0
dx e−i(p∗

n−p)x +
i

p∗
n − p

)
(17)

and therefore, with the prescription adopted,

〈zn|E〉 =
{

0, −π

4
< arg(p − p∗

n) < 5
π

4
∞, otherwise.

(18)

This means that a given scattering in state |E〉 (with momentum p > 0 on the real axis) is
orthogonal to any |zn〉 (with n > 0) if the momentum pn lies outside the cone with the apex
in p, the inner product being divergent otherwise. Vice versa, given pn, the momenta p of the
orthogonal scattering states lie outside the cone with the apex in pn (figure 2).

The scattering states always have a reflected wave with a momentum of opposite sign to
the incident one, so the situation is trickier for n < 0. Given p−|n|, the cone to be considered
is again the one with apex in the mirror momentum p |n|.

6
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3.3. Resonant and bound states

Let us suppose that, besides the barrier, there is some potential well within the region [0, L]
sustaining the bound states |φi〉 with purely imaginary momenta pi = iqi (qi > 0). The
exponential decrease of the amplitude outside the well, corresponding to resonant-like BCs

∂xφ|x=0= qφ(0), ∂xφ|x=L= −qφ(L) (q > 0), (19)

which imply the more popular (and weaker) φi(±∞) = 0, may be translated into the
assumption of an asymptotic form similar to (5), namely

φi(x) =
{
Ri eqix, x � 0
Ti e−qix, x � L

(20)

which is manifestly square integrable.
Following the same steps leading to (13), we now have

〈φi |zn〉 = (R∗
i Rn + T ∗

i Tn)

(∫ ∞

0
dx ei(iqi+pn)x − i

iqi + pn

)
. (21)

The integral is convergent, yielding i(iqi + pn)
−1 and hence 〈φi |zn〉 = 0, provided that

qi > | Im pn|. Thus, we have a situation similar to that occurring between the resonances,
namely that the states are orthogonal if the bound state momentum, lying in the positive
imaginary axis, and the resonant one, lie outside the respective divergence cones, the inner
product being infinite otherwise. It might happen that, for general analyticity reasons for any
general potential V (x) with barriers and wells within [0, L], the cones of the allowed bound
state momenta do never include the resonant momenta, but this point would require separate
investigation.

4. Symmetrical inner products

Together with the standard definition (7), which yields (finite or infinite) real norms, we shall
also consider the alternative symmetrical definition

{�|	} ≡
∫ +∞

−∞
dx φ(x)ψ(x), (22)

which arises in the convolution of kernel (8) with the initial state, and yields complex ‘norms’.
The calculation follows the same lines as above relying on the boundary conditions:

{zn|zm} = (RnRm + TnTm)

(∫ ∞

0
dx ei(pn+pm)x − i

pn + pm

)
. (23)

The result is

{zn|zm} =
{

0, −π

4
< arg(pm + pn) < 5

π

4
∞, otherwise.

(24)

For a given |zn〉, the apex of the divergence cone is at −pn so that, in particular, {zn|zm} = 0
if both m, n > 0, also if both m, n < 0, and, more noteworthy, {zn|zn} = 0 for any n. Only
some of the products are divergent when n and m have opposite sign.

For the crossed products of |zn〉 (n > 0) with the scattering p > 0 in state, one has

{zn|E} =
∫ ∞

0
dx(Rn ei(pn−p)x + (RnR + TnT ) ei(pn+p)x)− i

pn + p
(RnR + TnT )− i

pn − p
Rn.

(25)

7
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One always has −π
4 < arg(pn + p) < 5π

4 , so that

{zn|E} =
{

0, −π

4
< arg(pn − p) < 5

π

4
∞, otherwise.

(26)

Therefore, the divergence cone has the apex in pn, as in the case of the standard inner product
〈zn|E〉. For n < 0, only p + p−|n| may lie in the sector 5 π

4 < arg(pn + p) < 7π
4 leading to

a divergent product, so that, for a given p−|n| the p -states are orthogonal if p lies inside the
cone with apex in the mirror momentum p |n|, reproducing the same situation encountered for
the standard product.

Because of the relationship u−n(x) = u∗
n(x) between the outgoing solutions, we have

〈zn|zm〉 = {z−n|zm} and {zn|zm} = 〈z−n|zm〉. Then the result {zn|zn} = 0 is less surprising
if rewrite it as 〈z−n|zn〉 = 0, just a particular case of the conventional orthogonality between
states with momenta in opposite quadrants of the lower half complex plane.

5. Regularization of the divergent products

Several proposals have been worked out in the literature to deal with the divergent inner
products. We quote here the one by Romo [11] of analytically continuing the momentum
dependence of the solutions u(x) inside the products from the upper half complex plane,
where the (outgoing) function would be square-integrable, to the lower half-plane where the
resonant momenta lie. This is equivalent to prescribe the finite value ik−1 for the result of the
integral

∫ ∞
0 dx eikx also in the whole lower half-plane k, where it would actually be divergent

(see the discussion in the appendix). This approach, combined with advantages of working in
momentum representation, has been followed in later works [18].

Other proposals rely on the introduction of convergence factors in the integral which are
able to cope with the asymptotic exponential growth of the resonant solutions. The simple
factor e−λx, (λ real > 0) works only if λ is greater than the absolute values of the imaginary
parts of given pn and pm (which grow with increasing n ,m), so that λ cannot be brought to zero
without rendering divergent the integral. However, it lets performing an analytic continuation
in λ to its ‘forbidden’ values which may be adopted as a prescription.

Following Zel’dovich [13], we adopt the more powerful Gaussian factor e−λx2
, which

is able to overcome the growth of all the resonant solutions even for λ → 0+, and is
computationally tractable [5, 13]:

〈〈zn|zm〉〉λ ≡
∫ +∞

−∞
dx e−λx2

u∗
n(x)um(x) (λreal > 0). (27)

The functions e− 1
2 λx2

un(x) are not the eigenfunctions of the Hamiltonian, so the exact
calculation of (27) requires the knowledge of the explicit form of the solutions inside the
barrier.

Equation (10) now reads

〈〈zn|zm〉〉λ = (R∗
nRm + T ∗

n Tm)

∫ ∞

0
dx e−λx2

e−i(p∗
n−pm)x

+
∫ L

0
dx e−λx2

u∗
num − T ∗

n Tm

∫ L

0
dx e−λx2

e−i(p∗
n−pm)x. (28)

8
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According to (A.1), this regularized expression is finite for λ > 0:

〈〈zn|zm〉〉λ = (R∗
nRm + T ∗

n Tm)
−i

p∗
n − pm

√
π z ez2

erfc(z)

+
∫ L

0
dx u∗

num − T ∗
n Tm

∫ L

0
dx e−i(p∗

n−pm)x + O(λ) (29)

where z = i(p∗
n − pm)/(2

√
λ).

In the limit λ → 0+, the terms O(λ) vanish, and for
√

π z ez2
erfc(z), we have the result

(A.5). Thus, we obtain (14) in this limit, which must be intended as a prescription for the
calculation of (13). We discuss this issue in more detail in the appendix.

Note that for finite λ > 0, the exact integrals over the finite interval [0,L] get rather
involved and the one over the resonant functions inside the barrier depends on the explicit
form of the functions other than on the position of the resonant momenta.

The regularization works in a similar fashion for the crossed inner products 〈zn|E〉 and
〈zn|φi〉, as well as for the symmetrical definition.

6. Conclusions

We have calculated some relevant inner products involving the resonant eigenstates in the
example of a one-dimensional quantum potential barrier with compact support. This old
problem is non-trivial since the modulus of the resonant solutions grows exponentially at the
spatial infinity, giving rise to infinite norms and seemingly infinite inner products.

Among the variety of historical proposals to circumvent these difficulties, we have adopted
a Gaussian convergence factor, first introduced by Zel’dovich, and carried out the limit of the
integrals where the factor fades off to unity. This prescription yields inner products such that
most of these states are orthogonal to each other, except when they lie in a neighbourhood
defined by a ‘divergence cone’, in which case the product is infinite. Similarly, scattering states
(with real momentum p > 0) and bound states (pure imaginary momenta iqi , with qi > 0)
are orthogonal to a given resonant state |zn〉 with the momentum pn, except when p or iqi lie
in a neighbourhood of pn. Thus, the resonant states share the properties of the continuum and
discrete real spectra, namely (partial) orthogonality and the infinite norm characteristic to the
Dirac states.

This result is different from the full bi-orthogonality obtained by the prescription of
analytically continuing the finite integrals from the upper complex momentum plane to the
whole lower half-plane, where the resonant momenta lie but where the integrals are formally
divergent. Our limiting procedure instead extends the finite result to the more modest π/4
angular sectors of the lower half-plane close to the real axis. We differ also from earlier
attempts [5] using the Gaussian convergence factor, actually limited to the products 〈z−n|zm〉
(where |z−n〉 was mistaken for the incoming state |z̃n〉), in that our exact calculation also yields
〈z−n|zn〉 = 0 instead of a finite quantity normalizable to 1. The comparison with the results
obtained in the Friedrichs model [19, 20] is also interesting.

Therefore, the orthogonality and normalization properties obtained depend on the
prescription adopted, although one should expect, as a signature of their consistency, that
all of them lead to the same unique result. For instance, the inner self-product 〈zn|zn〉 yielding
the square of the conventional norm ‖zn‖, which is manifestly divergent on the same footing of
the scattering states, is finite for some prescriptions, whereas ours recovers the infinite result.

We do not investigate here the question if a regularization by different convergence factors
(using for instance e−λ|x|ν for some real value 1 < ν < 2) would yield narrower divergence
cones, thus approaching the result 〈zn|zm〉 = 0 (n �= m) which would seem more natural

9



J. Phys. A: Math. Theor. 43 (2010) 175301 J Julve and F J de Urrı́es

and closer to the result of the analytical continuation prescription. On the other hand, such
a continuation in the momentum of the solutions is a non-trivial matter [21] related to the
two-sheet structure of the complex energy plane.

The completeness of the scattering (plus bound, if any) solutions in the Hilbert space is not
inherited by the sole resonant (plus bound) states in resonance expansions of the unity, and a
continuum of complex energy ‘background’ states must be included [5, 22, 23]. Any consistent
unambiguous prescription for the calculation of the inner products involving resonances should
be tested against the requirement of idempotence of the unity, as discussed in the Introduction.
It is not clear how could it happen in the analytical continuation prescriptions, where the
claimed orthogonality between resonances (or between resonant and anti-resonant states) is of
the Kronecker-δ type, and the cross inner products between bound, resonant and background
states have not been worked out.

We instead have orthogonality between most of the states and divergent inner products
between ‘neighbour’ resonant (and continuum and bound) states, which then have also infinite
self-products consistently with the well-known infinite norm of the resonances. In a general
expansion involving bound, resonant (in variable number, according to the poles encircled by
the deformed integration path), scattering and continuum background states, showing directly
the idempotence of the unity requires tackling the products involving all of these families of
states. In this paper, we have done part of this program and developed some regularization and
calculational techniques. Work is in progress on the inner products involving the resonant and
the background states, aiming to the eventual cancellation of the divergences encountered.
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Appendix. Limits of erfc(z)-related integrals

We rely on the basic integral

J (k, λ) ≡
∫ +∞

0
dx e−λx2

eikx = i

k

√
π z ez2

erfc(z) (λ real > 0) (A.1)

which is directly related to (7.1.2) in [24], where z = −ik/(2
√

λ), and hence k can take any
complex value. Note that on completing a square in the exponent and changing the integration
variable to t = √

λ x + z, one obtains the intermediate expression

J (k, λ) = 1√
λ

ez2
∫ ∞+z

z

dt e−t2
. (A.2)

The integral representation (7.1.2) is convergent when the path of the complex integration
variable t approaches ∞ along a direction −π

4 < arg(t) < π
4 . This condition is fulfilled by

(A.2) as long as z remains finite. However, in (A.1) the limit λ → 0 (and hence z → ∞) can
not always be taken before the integration is carried out because the function fλ(x) ≡ e−λx2

does not converge uniformly to the function f0(x) = 1 when λ → 0.
For Im k > 0, the limit can be taken in the integrand in (A.1) because the finiteness of

the integral is always assured by the convergence factor e−(Im k) x , trivially yielding i k−1. In
this case, J (k, λ) converges to J (k, 0) = ik−1 when λ → 0.
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For real k, the result∫ ∞

0
dx eikx = i PV

1

k
+ πδ(k) (A.3)

is also well known. Note that it relies on adding to k a small imaginary part iε, which still
guarantees the convergence when λ → 0, but later in the limit ε → 0+ the result must be
interpreted as a distribution.

For Im k < 0, the integration and the limit λ → 0 do not commute. In that case, we
adopt the limit of the integral as a prescription. On the right-hand side of (A.1), the limit
λ → 0 can be directly inferred from the asymptotic expansion

√
π z ez2

erfc(z) ∼ 1 +
∞∑

m=1

(−1)m
1 · 3 . . . (2m − 1)

(2z2)m

(
z → ∞, |argz| <

3π

4

)
(A.4)

(see (7.1.23) in [24]), namely

limz→∞
√

π z ez2
erfc(z) =

{
1, −3

π

4
< arg(z) < 3

π

4
∞, otherwise

(A.5)

which can also be numerically checked. In this way, (A.5) yields an extension of J (k, 0) to a
new region of the lower half complex plane:

J (k, 0) =
{ i

k
, −π

4
< arg(k) < 5

π

4
, k �= 0

∞, otherwise.
(A.6)
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