1,168 research outputs found
Gauged WZW models for space-time groups and gravitational actions
In this paper we investigate gauged Wess-Zumino-Witten models for space-time
groups as gravitational theories, following the trend of recent work by
Anabalon, Willison and Zanelli. We discuss the field equations in any dimension
and study in detail the simplest case of two space-time dimensions and gauge
group SO(2,1). For this model we study black hole solutions and we calculate
their mass and entropy which resulted in a null value for both.Comment: 26 pages, no figure
Junction conditions in General Relativity with spin sources
The junction conditions for General Relativity in the presence of domain
walls with intrinsic spin are derived in three and higher dimensions. A stress
tensor and a spin current can be defined just by requiring the existence of a
well defined volume element instead of an induced metric, so as to allow for
generic torsion sources. In general, when the torsion is localized on the
domain wall, it is necessary to relax the continuity of the tangential
components of the vielbein. In fact it is found that the spin current is
proportional to the jump in the vielbein and the stress-energy tensor is
proportional to the jump in the spin connection. The consistency of the
junction conditions implies a constraint between the direction of flow of
energy and the orientation of the spin. As an application, we derive the
circularly symmetric solutions for both the rotating string with tension and
the spinning dust string in three dimensions. The rotating string with tension
generates a rotating truncated cone outside and a flat space-time with
inevitable frame dragging inside. In the case of a string made of spinning
dust, in opposition to the previous case no frame dragging is present inside,
so that in this sense, the dragging effect can be "shielded" by considering
spinning instead of rotating sources. Both solutions are consistently lifted as
cylinders in the four-dimensional case.Comment: 24 pages, no figures, CECS style. References added and misprints
corrected. Published Versio
Evaluating Unpaid Time Contributions by Seniors: A Conceptual Framework
In the past, considerable research in gerontology has focused on services provided to seniors. Recently, however, there has a been a growing recognition of the contributions made by seniors to their families, communities and to society. Empirical estimates have been provided by researchers to show how much these contributions are worth in terms of savings in dollar amounts. A critical review of the literature identifies unresolved issues concerning which contributions to count and how to measure and value these contributions. As yet, no clear criteria exist that readily identify the distinction between volunteer activities and unpaid work, what specifically should be counted as an unpaid time contribution, how it should be quantified, and how this unit of contribution should be monetarily valued. The market replacement approach and the opportunity cost approach that are used to assign value to unpaid work often use very different wage rates or levels of income loss. This paper reviews the relevant literature and identifies important issues in evaluating unpaid time contribution of seniors. The authors propose a framework which addresses some of the methodological shortcomings identified in previous research and which provides a guide for future research in this area.seniors; valuing unpaid work
The Universe as a topological defect
Four-dimensional Einstein's General Relativity is shown to arise from a gauge
theory for the conformal group, SO(4,2). The theory is constructed from a
topological dimensional reduction of the six-dimensional Euler density
integrated over a manifold with a four-dimensional topological defect. The
resulting action is a four-dimensional theory defined by a gauged
Wess-Zumino-Witten term. An ansatz is found which reduces the full set of field
equations to those of Einstein's General Relativity. When the same ansatz is
replaced in the action, the gauged WZW term reduces to the Einstein-Hilbert
action. Furthermore, the unique coupling constant in the action can be shown to
take integer values if the fields are allowed to be analytically continued to
complex values.Comment: 18 pages, LaTex, 4 figures. Title of the published version changed to
"Universe as a Topological defect" by the journa
Differential binding patterns of anti-sulfatide antibodies to glial membranes
Sulfatide is a major glycosphingolipid in myelin and a target for autoantibodies in autoimmune neuropathies. However neuropathy disease models have not been widely established, in part because currently available monoclonal antibodies to sulfatide may not represent the diversity of anti-sulfatide antibody binding patterns found in neuropathy patients. We sought to address this issue by generating and characterising a panel of new anti-sulfatide monoclonal antibodies. These antibodies have sulfatide reactivity distinct from existing antibodies in assays and in binding to peripheral nerve tissues and can be used to provide insights into the pathophysiological roles of anti-sulfatide antibodies in demyelinating neuropathies
International Guillain-Barré Syndrome Outcome Study (IGOS): protocol of a prospective observational cohort study on clinical and biological predictors of disease course and outcome in Guillain-Barré syndrome
Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy with a highly variable clinical presentation, course, and outcome. The factors that determine the clinical variation of GBS are poorly understood which complicates the care and treatment of individual patients. The protocol of the ongoing International GBS Outcome Study (IGOS), a prospective, observational, multi-centre cohort study that aims to identify the clinical and biological determinants and predictors of disease onset, subtype, course and outcome of GBS is presented here. Patients fulfilling the diagnostic criteria for GBS, regardless of age, disease severity, variant forms, or treatment, can participate if included within two weeks after onset of weakness. Information about demography, preceding infections, clinical features, diagnostic findings, treatment, course and outcome is collected. In addition, cerebrospinal fluid and serial blood samples for serum and DNA is collected at standard time points. The original aim was to include at least 1000 patients with a follow-up of 1-3 years. Data are collected via a web-based data entry system and stored anonymously. IGOS started in May 2012 and by January 2017 included more than 1400 participants from 143 active centres in 19 countries across 5 continents. The IGOS data/biobank is available for research projects conducted by expertise groups focusing on specific topics including epidemiology, diagnostic criteria, clinimetrics, electrophysiology, antecedent events, antibodies, genetics, prognostic modelling, treatment effects and long-term outcome of GBS. The IGOS will help to standardize the international collection of data and biosamples for future research of GBS. ClinicalTrials.gov Identifier: NCT01582763
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
Nature of Sonoluminescence: Noble Gas Radiation Excited by Hot Electrons in "Cold" Water
We show that strong electric fields occurring in water near the surface of
collapsing gas bubbles because of the flexoelectric effect can provoke dynamic
electric breakdown in a micron-size region near the bubble and consider the
scenario of the SBSL. The scenario is: (i) at the last stage of incomplete
collapse of the bubble the gradient of pressure in water near the bubble
surface has such a value and sign that the electric field arising from the
flexoelectric effect exceeds the threshold field of the dynamic electrical
breakdown of water and is directed to the bubble center; (ii) mobile electrons
are generated because of thermal ionization of water molecules near the bubble
surface; (iii) these electrons are accelerated in ''cold'' water by the strong
electric fields; (iv) these hot electrons transfer noble gas atoms dissolved in
water to high-energy excited states and optical transitions between these
states produce SBSL UV flashes in the trasparency window of water; (v) the
breakdown can be repeated several times and the power and duration of the UV
flash are determined by the multiplicity of the breakdowns. The SBSL spectrum
is found to resemble a black-body spectrum where temperature is given by the
effective temperature of the hot electrons. The pulse energy and some other
characteristics of the SBSL are found to be in agreement with the experimental
data when realistic estimations are made.Comment: 11 pages (RevTex), 1 figure (.ps
Disentangling the Motivations for Organizational Insider Computer Abuse through the Rational Choice and Life Course Perspectives
- …
