4,085 research outputs found
Societal Change and Values in Arab Communities in Israel: Intergenerational and Rural–Urban Comparisons
This study tested and extended Greenfield’s theory of social change and human development to adolescent development in Arab communities in Israel undergoing rapid social change. The theory views sociodemographic changes—such as contact with an ethnically diverse urban setting and spread of technology—as driving changes in cultural values. In one research design, we compared three generations, high school girls, their mothers, and their grandmothers, in their responses to value-assessment scenarios. In a second research design, we compared girls going to high school in an ethnically diverse city with girls going to school in a village. As predicted by the theory, a t test and ANOVA revealed that both urban life and membership in the youngest generation were significantly related to more individualistic and gender-egalitarian values. Regression analysis and a bootstrapping mediation analysis showed that the mechanism of change in both cases was possession of mobile technologies
Validation of the Harvard Lyman-α in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor
Building on previously published details of the laboratory calibrations of the Harvard Lyman-α photofragment fluorescence hygrometer (HWV) on the NASA ER-2 and WB-57 aircraft, we describe here the validation process for HWV, which includes laboratory calibrations and intercomparisons with other Harvard water vapor instruments at water vapor mixing ratios from 0 to 10 ppmv, followed by in-flight intercomparisons with the same Harvard hygrometers. The observed agreement exhibited in the laboratory and during intercomparisons helps corroborate the accuracy of HWV. In light of the validated accuracy of HWV, we present and evaluate a series of intercomparisons with satellite and balloon borne water vapor instruments made from the upper troposphere to the lower stratosphere in the tropics and midlatitudes. Whether on the NASA ER-2 or WB-57 aircraft, HWV has consistently measured about 1–1.5 ppmv higher than the balloon-borne NOAA/ESRL/GMD frost point hygrometer (CMDL), the NOAA Cryogenic Frost point Hygrometer (CFH), and the Microwave Limb Sounder (MLS) on the Aura satellite in regions of the atmosphere where water vapor is <10 ppmv. Comparisons in the tropics with the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite show large variable differences near the tropopause that converge to ~10% above 460 K, with HWV higher. Results we show from the Aqua Validation and Intercomparison Experiment (AquaVIT) at the AIDA chamber in Karlsruhe do not reflect the observed in-flight differences. We illustrate that the interpretation of the results of comparisons between modeled and measured representations of the seasonal cycle of water entering the lower tropical stratosphere is dictated by which data set is used
Vibrational modes of circular free plates under tension
The vibrational frequencies of a plate under tension are given by the
eigenvalues of the equation . This
paper determines the eigenfunctions and eigenvalues of this bi-Laplace problem
on the ball under natural (free) boundary conditions. In particular, the
fundamental modes --- the eigenfunctions of the lowest nonzero eigenvalue ---
are identified and found to have simple angular dependence.Comment: 17 pages. To be submitted for publication shortly
Superconducting Fluxon Pumps and Lenses
We study stochastic transport of fluxons in superconductors by alternating
current (AC) rectification. Our simulated system provides a fluxon pump,
"lens", or fluxon "rectifier" because the applied electrical AC is transformed
into a net DC motion of fluxons. Thermal fluctuations and the asymmetry of the
ratchet channel walls induce this "diode" effect, which can have important
applications in devices, like SQUID magnetometers, and for fluxon optics,
including convex and concave fluxon lenses. Certain features are unique to this
novel two-dimensional (2D) geometric pump, and different from the previously
studied 1D ratchets.Comment: Phys. Rev. Lett. 83, in press (1999); 4 pages, 5 .gif figures;
figures also available at http://www-personal.engin.umich.edu/~nori/ratche
High-temperature superconducting fault current microlimiters
High-temperature superconducting microbridges implemented with
YBa(2)Cu(3)O(7-delta) thin-films are shown to be possible fault current
limiters for microelectronic devices with some elements working at temperatures
below the superconducting critical temperature and, simultaneously, under very
low power conditions (below 1W). This is the case in the important applications
of superconductors as SQUID based electronics, and technologies for
communication or infrared detectors. In this paper it is shown that the good
thermal behavior of these microlimiters allows working in a regime where even
relatively small faults induce their transition to highly dissipative states,
dramatically increasing their limitation efficiency. The conditions for optimal
refrigeration and operation of these microlimiters are also proposed.Comment: 10 pages, 3 figures. LaTeX and EPS file
Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer
SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness
Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium.
Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a \u27ladder\u27 pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen
Space-time versus particle-hole symmetry in quantum Enskog equations
The non-local scattering-in and -out integrals of the Enskog equation have
reversed displacements of colliding particles reflecting that the -in and -out
processes are conjugated by the space and time inversions. Generalisations of
the Enskog equation to Fermi liquid systems are hindered by a request of the
particle-hole symmetry which contradicts the reversed displacements. We resolve
this problem with the help of the optical theorem. It is found that space-time
and particle-hole symmetry can only be fulfilled simultaneously for the
Bruckner-type of internal Pauli-blocking while the Feynman-Galitskii form
allows only for particle-hole symmetry but not for space-time symmetry due to a
stimulated emission of Bosons
Relativity principles in 1+1 dimensions and differential aging reversal
We study the behavior of clocks in 1+1 spacetime assuming the relativity
principle, the principle of constancy of the speed of light and the clock
hypothesis. These requirements are satisfied by a class of Finslerian theories
parametrized by a real coefficient , special relativity being recovered
for . The effect of differential aging is studied for the different
values of . Below the critical values the differential
aging has the usual direction - after a round trip the accelerated observer
returns younger than the twin at rest in the inertial frame - while above the
critical values the differential aging changes sign. The non-relativistic case
is treated by introducing a formal analogy with thermodynamics.Comment: 12 pages, no figures. Previous title "Parity violating terms in
clocks' behavior and differential aging reversal". v2: shortened
introduction, some sections removed, pointed out the relation with Finsler
metrics. Submitted to Found. Phys. Let
The Relativistic Electrodynamics Least Action Principles Revisited: New Charged Point Particle and Hadronic String Models Analysis
The classical relativistic least action principle is revisited from the
vacuum field theory approach. New physically motivated versions of relativistic
Lorentz type forces are derived, a new relativistic hadronic string model is
proposed and analyzed in detail.Comment: n/
- …
