706 research outputs found

    Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields

    Full text link
    As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities, and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and non-magnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit 2002 and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30 to 50 when compared with the non-magnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main sequence mass. That is, pulsars derived from more massive stars will rotate faster and rotation will play a more dominant role in the star's explosion. The final angular momentum of the core is determined - to within a factor of two - by the time the star ignites carbon burning. For the lighter stars studied, around 15 solar masses, we predict pulsar periods at birth near 15 ms, though a factor of two range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fall back, are also explored.Comment: 32 pages, 3 figures (8 eps files), submitted to Ap

    The Projected Rotational Velocity Distribution of a Sample of OB stars from a Calibration based on Synthetic He I lines

    Full text link
    We derive projected rotational velocities (vsini) for a sample of 156 Galactic OB star members of 35 clusters, HII regions, and associations. The HeI lines at λλ\lambda\lambda4026, 4388, and 4471A were analyzed in order to define a calibration of the synthetic HeI full-widths at half maximum versus stellar vsini. A grid of synthetic spectra of HeI line profiles was calculated in non-LTE using an extensive helium model atom and updated atomic data. The vsini's for all stars were derived using the He I FWHM calibrations but also, for those target stars with relatively sharp lines, vsini values were obtained from best fit synthetic spectra of up to 40 lines of CII, NII, OII, AlIII, MgII, SiIII, and SIII. This calibration is a useful and efficient tool for estimating the projected rotational velocities of O9-B5 main-sequence stars. The distribution of vsini for an unbiased sample of early B stars in the unbound association Cep OB2 is consistent with the distribution reported elsewhere for other unbound associations.Comment: Accepted for publication in The Astronomical Journa

    A contemporary assessment of devices for Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA): resource-specific options per level of care

    Get PDF
    Purpose: Use of Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) as adjunct for temporary hemorrhage control in patients with exsanguinating torso hemorrhage is increasing. Characteristics of aortic occlusion balloons (AOB) are diverse and evolving as efforts are made to improve the technology. It is important to select a device that fits the requirements of the medical situation to minimize the risk of failure and complications. The aim of this study is to appraise guidance in the choice of an AOB in a specific situation. Methods: We assessed 29 AOB for differences and outline possible advantages and disadvantages of each. Bending stiffness was measured with a three-point bending device. Results: Diameter of the AOB ranged from 6 (ER-REBOA™) to 10 (Coda®-46) French. However, some need large-bore access sheaths up to 22 French (Fogarty®-45 and LeMaitre®-45) or even insertion via cut-down (Equalizer™-40). Bending stiffness varied from 0.08 N/mm (± 0.008 SD; Coda®-32) to 0.72 N/mm (± 0.024 SD; Russian prototype). Rescue Balloon™ showed kinking of the shaft at low bending pressures. The only non-compliant AOB is REBOA Balloon®. ER-REBOA™, Fogarty®, LeMaitre®, REBOA Balloon®, and Rescue Balloon™ are provided with external length marks to assist blind positioning. Conclusion: In resource-limited settings, a guidewire- and fluoroscopy-free, rather stiff device, such as ER-REBOA™, Fogarty®, and LeMaitre®, is warranted. Of these devices, ER-REBOA™ is the only catheter compatible with seven French sheaths and specifically designed for emergency hemorrhage control. Of the over-the-wire devices, Q50® has several features that facilitate use and reduce the risk of malplacement or vessel damage

    Gamma-Ray Bursts from tidally spun-up Wolf-Rayet stars?

    Full text link
    The collapsar model requires rapidly rotating Wolf-Rayet stars as progenitors of long gamma-ray bursts. However, Galactic Wolf-Rayet stars rapidly lose angular momentum due to their intense stellar winds. We investigate whether the tidal interaction of a Wolf-Rayet star with a compact object in a binary system can spin up the Wolf-Rayet star enough to produce a collapsar. We compute the evolution of close Wolf-Rayet binaries, including tidal angular momentum exchange, differential rotation of the Wolf-Rayet star, internal magnetic fields, stellar wind mass loss, and mass transfer. The Wolf-Rayet companion is approximated as a point mass. We then employ a population synthesis code to infer the occurrence rates of the various relevant binary evolution channels. We find that the simple scenario -- i.e., the Wolf-Rayet star being tidally spun up and producing a collapsar -- does not occur at solar metallicity and may only occur with low probability at low metallicity. It is limited by the widening of the binary orbit induced by the strong Wolf-Rayet wind or by the radius evolution of the Wolf-Rayet star that most often leads to a binary merger. The tidal effects enhance the merger rate of Wolf-Rayet stars with black holes such that it becomes comparable to the occurrence rate of long gamma-ray bursts.Comment: 9 pages, 11 figures, accepted for publication in A&

    Expressiveness modulo Bisimilarity of Regular Expressions with Parallel Composition (Extended Abstract)

    Get PDF
    The languages accepted by finite automata are precisely the languages denoted by regular expressions. In contrast, finite automata may exhibit behaviours that cannot be described by regular expressions up to bisimilarity. In this paper, we consider extensions of the theory of regular expressions with various forms of parallel composition and study the effect on expressiveness. First we prove that adding pure interleaving to the theory of regular expressions strictly increases its expressiveness up to bisimilarity. Then, we prove that replacing the operation for pure interleaving by ACP-style parallel composition gives a further increase in expressiveness. Finally, we prove that the theory of regular expressions with ACP-style parallel composition and encapsulation is expressive enough to express all finite automata up to bisimilarity. Our results extend the expressiveness results obtained by Bergstra, Bethke and Ponse for process algebras with (the binary variant of) Kleene's star operation.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    Atmospheric parameters and rotational velocities for a sample of Galactic B-type supergiants

    Get PDF
    High resolution optical spectra of 57 Galactic B-type supergiant stars have been analyzed to determine their rotational and macroturbulent velocities. In addition, their atmospheric parameters (effective temperature, surface gravity and microturbulent velocity) and surface nitrogen abundances have been estimated using a non-LTE grid of model atmospheres. Comparisons of the projected rotational velocities have been made with the predictions of stellar evolutionary models and in general good agreement was found. However for a small number of targets, their observed rotational velocities were significantly larger than predicted, although their nitrogen abundances were consistent with the rest of the sample. We conclude that binarity may have played a role in generating their large rotational velocities. No correlation was found between nitrogen abundances and the current projected rotational velocities. However a correlation was found with the inferred projected rotational velocities of the main sequence precursors of our supergiant sample. This correlation is again in agreement with the predictions of single star evolutionary models that incorporate rotational mixing. The origin of the macroturbulent and microturbulent velocity fields is discussed and our results support previous theoretical studies that link the former to sub-photospheric convection and the latter to non-radial gravity mode oscillations. In addition, we have attempted to identify differential rotation in our most rapidly rotating targets.Comment: Submitted to MNRAS, 16 page

    HVS7: a chemically peculiar hyper-velocity star

    Full text link
    Context: Hyper-velocity stars are suggested to originate from the dynamical interaction of binary stars with the supermassive black hole in the Galactic centre (GC), which accelerates one component of the binary to beyond the Galactic escape velocity. Aims: The evolutionary status and GC origin of the HVS SDSS J113312.12+010824.9 (HVS7) is constrained from a detailed study of its stellar parameters and chemical composition. Methods: High-resolution spectra of HVS7 obtained with UVES on the ESO VLT were analysed using state-of-the-art NLTE/LTE modelling techniques that can account for a chemically-peculiar composition via opacity sampling. Results: Instead of the expected slight enrichments of alpha-elements and near-solar Fe, huge chemical peculiarities of all elements are apparent. The He abundance is very low (<1/100 solar), C, N and O are below the detection limit, i.e they are underabundant (<1/100, <1/3 and <1/10 solar). Heavier elements, however, are overabundant: the iron group by a factor of ~10, P, Co and Cl by factors ~40, 80 and 440 and rare-earth elements and Hg even by ~10000. An additional finding, relevant also for other chemically peculiar stars are the large NLTE effects on abundances of TiII and FeII (~0.6-0.7dex). The derived abundance pattern of HVS7 is characteristic for the class of chemical peculiar magnetic B stars on the main sequence. The chemical composition and high vsini=55+-2km/s render a low mass nature of HVS7 as a blue horizontal branch star unlikely. Conclusions: Such a surface abundance pattern is caused by atomic diffusion in a possibly magnetically stabilised, non-convective atmosphere. Hence all chemical information on the star's place of birth and its evolution has been washed out. High precision astrometry is the only means to validate a GC origin for HVS7.Comment: 9 pages, 3 figure

    Distribution of compact object mergers around galaxies

    Get PDF
    Compact object mergers are one of the currently favored models for the origin of GRBs. The discovery of optical afterglows and identification of the nearest, presumably host, galaxies allows the analysis of the distribution of burst sites with respect to these galaxies. Using a model of stellar binary evolution we synthesize a population of compact binary systems which merge within the Hubble time. We include the kicks in the supernovae explosions and calculate orbits of these binaries in galactic gravitational potentials. We present the resulting distribution of merger sites and discuss the results in the framework of the observed GRB afterglows.Comment: 8 pages, 5 figures, submitted to MNRA

    The VLT-FLAMES survey of massive stars: Nitrogen abundances for Be-type stars in the Magellanic Clouds

    Full text link
    Aims. We compare the predictions of evolutionary models for early-type stars with atmospheric parameters, projected rotational velocities and nitrogen abundances estimated for a sample of Be-type stars. Our targets are located in 4 fields centred on the Large Magellanic Cloud cluster: NGC 2004 and the N 11 region as well as the Small Magellanic Cloud clusters: NGC 330 and NGC 346. Methods. Atmospheric parameters and photospheric abundances have been determined using the non-LTE atmosphere code tlusty. Effective temperature estimates were deduced using three different methodologies depending on the spectral features observed; in general they were found to yield consistent estimates. Gravities were deduced from Balmer line profiles and microturbulences from the Si iii spectrum. Additionally the contributions of continuum emission from circumstellar discs were estimated. Given its importance in constraining stellar evolutionary models, nitrogen abundances (or upper limits) were deduced for all the stars analysed. Results. Our nitrogen abundances are inconsistent with those predicted for targets spending most of their main sequence life rotating near to the critical velocity. This is consistent with the results we obtain from modelling the inferred rotational velocity distribution of our sample and of other investigators. We consider a number of possibilities to explain the nitrogen abundances and rotational velocities of our Be-type sample.Comment: 14 pages, 9 figures, submitted to A&
    corecore