998 research outputs found

    Gravity localization on hybrid branes

    Get PDF
    This work deals with gravity localization on codimension-1 brane worlds engendered by compacton-like kinks, the so-called hybrid branes. In such scenarios, the thin brane behaviour is manifested when the extra dimension is outside the compact domain, where the energy density is non-trivial, instead of asymptotically as in the usual thick brane models. The zero mode is trapped in the brane, as required. The massive modes, although are not localized in the brane, have important phenomenological implications such as corrections to the Newton's law. We study such corrections in the usual thick domain wall and in the hybrid brane scenarios. By means of suitable numerical methods, we attain the mass spectrum for the graviton and the corresponding wavefunctions. The spectra possess the usual linearly increasing behaviour from the Kaluza-Klein theories. Further, we show that the 4D gravitational force is slightly increased at short distances. The first eigenstate contributes highly for the correction to the Newton's law. The subsequent normalized solutions have diminishing contributions. Moreover, we find out that the phenomenology of the hybrid brane is not different from the usual thick domain wall. The use of numerical techniques for solving the equations of the massive modes is useful for matching possible phenomenological measurements in the gravitational law as a probe to warped extra dimensions.Comment: 15 pages, 11 figure

    Transiting Disintegrating Planetary Debris around WD 1145+017

    Full text link
    More than a decade after astronomers realized that disrupted planetary material likely pollutes the surfaces of many white dwarf stars, the discovery of transiting debris orbiting the white dwarf WD 1145+017 has opened the door to new explorations of this process. We describe the observational evidence for transiting planetary material and the current theoretical understanding (and in some cases lack thereof) of the phenomenon.Comment: Invited review chapter. Accepted March 23, 2017 and published October 7, 2017 in the Handbook of Exoplanets. 15 pages, 10 figure

    Manejo correto da ordenha e qualidade do leite.

    Get PDF
    Muitas vezes o produtor se questiona quais as vantagens de adotar duas ou três ordenhas diárias. A resposta para esta pergunta tem que considerar uma série de fatores, tais como o custo da mão de obra, custos adicionais conseqüentes da realização de uma terceira ordenha (luz, material de limpeza, etc.), incremento na produção de leite obtido e o valor recebido pelo leite.bitstream/item/55815/1/CR27-02.pd

    Strangelet dwarfs

    Full text link
    If the surface tension of quark matter is low enough, quark matter is not self bound. At sufficiently low pressure and temperature, it will take the form of a crystal of positively charged strangelets in a neutralizing background of electrons. In this case there will exist, in addition to the usual family of strange stars, a family of low-mass large-radius objects analogous to white dwarfs, which we call "strangelet dwarfs". Using a generic parametrization of the equation of state of quark matter, we calculate the mass-radius relationship of these objects.Comment: 10 pages, LaTeX, added discussion of CFL phase and strangelet pollution, version to appear in journal. arXiv admin note: text overlap with arXiv:0808.067

    Diabetic Foot Ulcers Classification using a fine-tuned CNNs Ensemble

    Get PDF
    Diabetic Foot Ulcers (DFU) are lesions in the foot region caused by diabetes mellitus. It is essential to define the appropriate treatment in the early stages of the disease once late treatment may result in amputation. This article proposes an ensemble approach composed of five modified convolutional neural networks (CNNs) - VGG-16, VGG-19, Resnet50, InceptionV3, and Densenet-201 - to classify DFU images. To define the parameters, we fine-tuned the CNNs, evaluated different configurations of fully connected layers, and used batch normalization and dropout operations. The modified CNNs were well suited to the problem; however, we observed that the union of the five CNNs significantly increased the success rates. We performed tests using 8,250 images with different resolution, contrast, color, and texture characteristics and included data augmentation operations to expand the training dataset. 5-fold cross-validation led to an average accuracy of 95.04%, resulting in a Kappa index greater than 91.85%, considered Excellent

    Formation, Survival, and Detectability of Planets Beyond 100 AU

    Get PDF
    Direct imaging searches have begun to detect planetary and brown dwarf companions and to place constraints on the presence of giant planets at large separations from their host star. This work helps to motivate such planet searches by predicting a population of young giant planets that could be detectable by direct imaging campaigns. Both the classical core accretion and the gravitational instability model for planet formation are hard-pressed to form long-period planets in situ. Here, we show that dynamical instabilities among planetary systems that originally formed multiple giant planets much closer to the host star could produce a population of giant planets at large (~100 AU - 100000 AU) separations. We estimate the limits within which these planets may survive, quantify the efficiency of gravitational scattering into both stable and unstable wide orbits, and demonstrate that population analyses must take into account the age of the system. We predict that planet scattering creates a population of detectable giant planets on wide orbits that decreases in number on timescales of ~10 Myr. We demonstrate that several members of such populations should be detectable with current technology, quantify the prospects for future instruments, and suggest how they could place interesting constraints on planet formation models.Comment: 13 pages (emulateapj format), 10 figures, accepted for publication in Ap

    A gap in the mass distribution for warm Neptune and terrestrial planets

    Get PDF
    Structure in the planet distribution provides an insight into the processes that shape the formation and evolution of planets. The Kepler mission has led to an abundance of statistical discoveries in regards to planetary radius, but the number of observed planets with measured masses is much smaller. By incorporating results from recent mass determination programs, we have discovered a new gap emerging in the planet population for sub-Neptune-mass planets with orbital periods less than 20 days. The gap follows a slope of decreasing mass with increasing orbital period, has a width of a few M ⊕, and is potentially completely devoid of planets. Fitting Gaussian mixture models to the planet population in this region favors a bimodel distribution over a unimodel one with a reduction in Bayesian information criterion of 19.9, highlighting the gap significance. We discuss several processes that could generate such a feature in the planet distribution, including a pileup of planets above the gap region, tidal interactions with the host star, dynamical interactions with the disk, with other planets, or with accreting material during the formation process
    corecore