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This work deals with gravity localization on codimension-1 brane worlds engendered by compacton-
like kinks, the so-called hybrid branes. In such scenarios, the thin brane behavior is manifested when 
the extra dimension is outside the compact domain, where the energy density is non-trivial, instead of 
asymptotically as in the usual thick brane models. The zero mode is trapped in the brane, as required. 
The massive modes, although not localized in the brane, have important phenomenological implications 
such as corrections to the Newton’s law. We study such corrections in the usual thick domain wall and 
in the hybrid brane scenarios. By means of suitable numerical methods, we attain the mass spectrum 
for the graviton and the corresponding wavefunctions. The spectra possess the usual linearly increasing 
behavior from the Kaluza–Klein theories. Further, we show that the 4D gravitational force is slightly 
increased at short distances. The first eigenstate contributes highly for the correction to the Newton’s 
law. The subsequent normalized solutions have diminishing contributions. Moreover, we find out that 
the phenomenology of the hybrid brane is not different from the usual thick domain wall. The use of 
numerical techniques for solving the equations of the massive modes is useful for matching possible 
phenomenological measurements in the gravitational law as a probe to warped extra dimensions.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Solitons are structures found as solutions of certain classes of 
non-linear differential equations which arise from interactions of 
non-linear and dispersive effects in the medium [1,2]. They are 
present in many physical contexts, such as fiber optics [3], protein 
and polyethylene chains [4–6], DNA macromolecule [7], plasmas 
[8], Josephson junctions [9] and many others. In field theory, the 
topological defects (solutions which are stable against decays to 
trivial solutions) usually appear in models that support sponta-
neous symmetry breaking. The most known examples are kinks, 
domain walls, vortex, strings and monopoles [10].

An interesting solitonic solution is the compacton, found by 
Rosenau and Hyman [11] as solution of a special class of the 
Korteweg–de Vries (KDV) equation. Such structures have compact 
support. They differ from trivial solution only in a finite region 
of space. Compactons are found in a wide variety of physical sys-
tems where non-linear dispersion arises naturally. For example, the 
equation governing the motion of a dense chain is a prototype of 
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compacton supporting systems [12,13]. Moreover, a non-linear dy-
namical model of the DNA macromolecule can also support topo-
logical compactons [14]. Recently, the existence of compacton mat-
ter waves in Bose–Einstein condensates in deep optical lattices [15]
was observed.

Investigation of the presence of compactons in relativistic scalar 
field theory was also performed [16–19]. The φ4 model with non-
linear coupling can exhibit a static compact solution [16]. Besides, 
non-linear dispersion gives rise to compact structures in models 
described by a single real scalar field in two-dimensional space-
time [17–19].

The physical interest of compactons lies in that they are soli-
tary waves whose energy is strictly localized. Besides, differently 
from the ordinary solitonic waves which have infinite tails, two 
compacton-like structures would only interact with each other at 
the moment of collision [11].

In the last decade, the braneworld models have gained a con-
siderable amount of attention in the literature, since they provide 
a solution for the gauge hierarchy and the cosmological constant 
problems [20–22]. In particular, the Randall–Sundrum (RS) model 
brought the idea of an infinity extra dimension through a warped 
geometry [23]. Furthermore, the proposal of branes being gener-
ated by topological defects was also introduced, wherein domain 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://core.ac.uk/display/82243031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2016.01.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:franklin@fisica.ufc.br
mailto:wilamicruz@gmail.com
mailto:r.v.maluf@fisica.ufc.br
mailto:carlos@fisica.ufc.br
http://dx.doi.org/10.1016/j.physletb.2016.01.013
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.01.013&domain=pdf


202 D.F.S. Veras et al. / Physics Letters B 754 (2016) 201–207
walls have been used to represent the brane [24,25]. In this way, 
the five-dimensional gravity is coupled to background scalar fields 
[25,26]. Such scalar fields extend the singular thin brane in the RS 
model to the so-called thick branes [27]. The inclusion of a brane 
thickness gives new possibilities and new richer variety of brane 
worlds [28].

Recently, Bazeia et al. developed a mechanism that smoothly 
interpolates from kinks to compactons in the context of a rela-
tivistic field theory [18]. Such mechanism made possible the set 
up of a braneworld scenario being generated by a compacton-like 
defect. The resulting thick brane possesses a hybrid profile (and 
hence termed hybrid brane): while the usual thick branes behave 
as thin branes asymptotically, the hybrid brane behaves as a thin 
one when the extra dimension is outside the domain where the 
energy density is non-trivial [18].

An important reason to include compacton-like structures to 
conceive a thick braneworld scenario, lays in that its thickness can 
be controlled, unlike the ordinary domain walls models [28]. In 
this work, we study the gravity fluctuations in hybrid branes. We 
show that only one of the models proposed in the Ref. [18] con-
ducts to a warped spacetime that presents the hybrid profile more 
clearly. As required, the massless mode (responsible to reproduce 
the 4D gravitational law) is trapped in the brane. Besides, we at-
tain the Kaluza–Klein mass spectrum and the correspondent mas-
sive modes. Although the massive modes are not localized in the 
brane, they have important phenomenological implication: the cor-
rection of the Newton’s law at short distances. We show that the 
first massive eigenstate has the highest contribution. The subse-
quent normalized solutions have diminishing contributions. More-
over the phenomenology is the same for both hybrid and thick 
domain wall branes.

2. The hybrid brane scenario

In this section, we will present the formalism for building a 
braneworld scenario in a five dimensional warped spacetime en-
gendered by a compacton-like defect. Let us start from the La-
grangian density for a real scalar field φ(x) with spontaneous sym-
metry breaking in dimensionless form:

Lk = 1

2
∂μφ∂μφ − Vk(φ), (1)

where

Vk(φ) = 1

2
(1 − φ2)2. (2)

The topological solution connecting the minima φ0 = ±1 is the 
well-known kink solution, given explicitly by φ(x) = tanh x. Its en-
ergy density is ρ(x) = sech4 x.

Compacton-like defects appear in relativistic field theory from 
the Lagrangian [18]

Lc = −1

4

(
∂μφ∂μφ

)2 − 3

2
Vk(φ), (3)

whose equation of motion is(
dφ

dx

)2 d2φ

dx2
= −φ(1 − φ2). (4)

In this model, non-linearity raises from the potential and the 
generalized kinematics introduces non-linear dispersion [18]. The 
topological solution is given by [18]

φc(x) =
⎧⎨
⎩

−1 if x < π/2 ,

sin x if |x| ≤ π/2 ,

1 if x > π/2 .

(5)
Fig. 1. Plot of the potential Vα for α = 0.001 (thick line), α = 1.0 (dashed line), 
α = 100.0 (dotted line) and α = 10000.0 (thin line).

This solution is stable and has the energy density [18]

ρc(x) =
{

cos4 x if |x| ≤ π/2 ,

0 if |x| > π/2 .
(6)

Note that the solution φc and its energy density have localized 
support exhibiting the compacton-like structure of the model.

Although the two scenarios are very distinct, a method that 
smoothly transforms kinks into compactons was proposed in 
Ref. [18]. In the deformation mechanism [29], two distinct mod-
els with standard kinematics were used [18]:

Lα,n = 1

2
∂μφ∂μφ − Vα,n(φ), (7)

where

Vα(φ) = 1

2α

(√
1 + 4α

(
1 + α

2

)
Vk(φ) − 1

)
(8)

and

Vn(φ) = 1

2

(
1 − φ2n

)2
, (9)

with α being a non-negative real parameter and n ≥ 1, an integer 
one. We plot in Figs. 1 and 2, the potentials Vα and Vn , respec-
tively, for different values of the parameters α and n. Note that for 
n = 1 and in the limit α → 0, the usual φ4 potential is recovered. 
The minima and maxima are unaltered. The deformation in Vα is 
very slow if compared with Vn . Notice also that, even for α = 100
or α = 10 000, Vα is only slightly modified. Furthermore, note that 
Vn acquires a compacted shape for larger n.

An interesting subject is how to construct a braneworld sce-
nario engendered by a compacton defect. In the Ref. [18] it was 
performed for the model Ln only. Instead, we will investigate the 
brane set up mechanism for both models Lα and Ln numerically.

Consider the scalar field φα,n(y) coupled to gravity in a five-
dimensional warped spacetime with an extra dimension y of infi-
nite extent. As usual, the metric is ds2 = e2A(y) ημνdxμdxν − dy2, 
where ημν is the Minkowski metric with signature (−, +, +, +)

and e2A(y) is the warp factor [28]. Thus, the Einstein–Hilbert ac-
tion reads

Sα,n = −
∫

d5x
√−G

(
1

4
R −Lα,n

)
, (10)

where R is the scalar curvature. To build the braneworld scenario 
we will made use of the method developed in Ref. [30] wherein 
a superpotential W (φ) is constructed from the potential V (φ) in 
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Fig. 2. Plot of the potential Vn for n = 1 (thick line), n = 2 (dashed line), n = 3
(dash-dot line), n = 15 (dotted line) and n = 100 (thin line).

Fig. 3. Potential in curved spacetime. The thin line corresponds to a brane being 
engendered by the φ4 model. The dashed line is the plot of Vα and the thick line 
the plot of Vn .

order to reduce the second order equations of motion to first order 
ones. In this way, the equations of motion read

φ′′ + 4φ′ A′
α,n = dVα,n

dφ
, (11)

A′′
α,n = −2 (

φ′)2
, (12)
3

(
A′

α,n

)2 = 1

6
φ′ − 1

3
Vα,n(φ), (13)

where the primes denote derivatives with respect to y. Defining 
[18]

Vα,n(φ) = 1

2

(
dWα,n

dφ

)2

, (14)

the first order differential equations

φ′
α,n = dWα,n

dφ
, and A′

α,n = −2

3
Wα,n(φ) (15)

solve the equations of motion (11), (12) and (13). Then, the poten-
tial in the curved spacetime reads

Vα,n(φ) = 1

2

(
dWα,n

dφ

)2

− 4

3
W 2

α,n(φ). (16)

In order to achieve Wα,n , we performed the numerical quadra-
ture of Eq. (14). Then it was possible to construct the potentials 
that engender the brane. We plot in Fig. 3 the potentials Vα

and Vn . Note that only Vn possesses a compacted behavior. The 
results for the model Ln agrees with the analytical solution for 
Wn and Vn given, respectively, by

Wn(φ) = φ − φ2n+1

2n + 1
, (17)

and

Vn(φ) = 1

8
(1 − φ2n)2 − 1

3

(
φ − φ1+2n

1 + 2n

)2

. (18)

With the numerical approximation of the superpotencial
Wα,n(φ) in hands, we were able to attain the scalar fields φα,n(y)

and the warp functions Aα,n(y). We solved the static equations 
of motion (15) using fourth order Runge–Kutta algorithms impos-
ing that φα,n(0) = 0. We plot in Fig. 4 the solutions φα,n(y) for 
different values of the parameters. As for the potential functions, 
the solutions behave like kinks for n = 1 and α → 0. However, 
for very large values of the parameters, the solutions identify 
with the compacton soliton. Furthermore, note that φn(y) resem-
bles much better to the compacton defect in the finite domain 
[−1, 1]. To attain the warp functions, we employed the shooting 
method in Eq. (12) with Runge–Kutta routines. The warp factors 
σα,n(y) ≡ e2Aα,n(y) are plotted in Fig. 5. Note that σα varies much 
slower than σn .
Fig. 4. Scalar field solution φα(y) in (a) and φn(y) in (b) which engenders the brane. Note that the solution φn for large n clearly resembles a compact defect.
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Fig. 5. Warp factors σα,n(y) ≡ e2Aα,n(y) .
Fig. 6. Scalar curvature Rα(y) for α = 0.01 (thick line), α = 1.0 (dashed line), α =
20.0 (dotted line) and α = 150.0 (thin line).

Fig. 7. Scalar curvature Rn(y) for n = 1 (thick line), n = 2 (dashed line), n = 7 (dot-
ted line) and n = 100 (thin line). The sudden change to a negative constant value 
clearly characterizes the hybrid behavior of the brane.

The hybrid behavior of the brane is more clearly revealed in 
the scalar curvature, given by Rα,n(y) = − 

[
8A′′

α,n + 20
(

A′
α,n

)2
]

. 
We plot in Figs. 6 and 7 the scalar curvatures Rα and Rn , re-
spectively. In both cases, the AdS5 limit for the bulk is present. 
However, note that Rn has a sudden change to a constant negative 
value. Thus, the model Ln conducts to a hybrid brane in a better 
way.
3. Gravity fluctuations

We are interested in study the stability of the gravity sector of 
a braneworld scenario engendered by a compacton-like structure. 
Hence, we introduce the small perturbation hμν(x, y) as

ds2 = σ(y)(ημν + hμν)dxμνdxμν + dy2. (19)

Imposing the transverse-traceless gauge and h5N = 0, the graviton 
equation of motion is [25]

h′′
μν + 2σ ′

σ
h′
μν = σ−1�hμν, (20)

where � is the (3 + 1)-dimensional d’Alembertian. Furthermore, 
assuming the Kaluza–Klein (KK) decomposition hμν(x, z) =∑

k h(0)
μν(x)φk(z), where ημν∂μ∂νh(0)

μν = −m2
k h(0)

μν , with m being the 
four-dimensional KK mass of the fluctuation, the gravitational KK 
modes in the extra dimension is described by the following Sturm–
Liouville equation

φ′′
k + 2σ ′

σ
φ′

k = −m2
kσ

−1φk. (21)

To deal with a conformal metric, we change the coordinate 
to dz = σ−1/2dy [32]. Further, defining φk(y) = σ−3/4ψk(z), the 
Sturm–Liouville equation (21) reduces to a Schrödinger-like form 
[32]

−ψ̈k(z) + Uα,n(z)ψk(z) = m2
kψk(z), (22)

where Uα,n is the analogue quantum potential

Uα,n(z) = 3

4

[
σ̈α,n

σα,n
− 1

4

(
σ̇α,n

σα,n

)2
]

, (23)

and the over-dots represents derivatives with respect to z. The 
Eq. (22) does not concede tachyons as shown in Ref. [30]. Further-
more, the gravitational zero-mode (m = 0 normalizable state) is 
trapped in the brane and is given by ψm=0(z) = Nσ 3/2(z), where 
N is a normalization constant [31].

We plot in Figs. 8 and 9 the potentials Uα and Un , respectively. 
The potentials have the usual volcano shape [25], which may sup-
port bound states. However, only the Un potential possesses the 
hybrid profile. Note that the thin brane pattern (∼ z−2) [23] is 
present forthwith after the compact domain (≈ |z| ≤ 3) instead of 
asymptotically. Hence, the model Lα does not prompt significant 
changes in the usual thick brane scenario.
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Fig. 8. Schrödinger-like potential Uα(z) for α = 0.01 (thick line), α = 1.0 (dashed 
line), α = 20.0 (dotted line), α = 150.0 (thin line). There are no significant changes 
in the structure of the volcano-like potential with respect to α.

Fig. 9. Schrödinger-like potential Un(z) for n = 1 (dashed line), n = 2 (dotted line) 
and n = 100 (thick line). The compact property of the scalar field solution causes 
the sudden change, evincing the hybrid brane profile.

4. Phenomenological implications

An interesting and relevant point to analyze is the correction 
in the Newtonian potential due to the influence of the Kaluza–
Klein modes. A solution of the Schrödinger-like equation, ψk with 
energy m2

k contributes with a Yukawa-like correction to the New-

ton’s law with a term ψ2
k (0)

M3∗
e−mkr

r , where ψk(z) is normalized to ∫
dz|ψk(z)|2 = 1 and M∗ is the fundamental Planck scale in 5D

[27]. If the analogue quantum potential goes to zero at infinity, 
there is a continuum of scattering states. However, for the case 
when U (z) > 0 for |z| → ∞, the excited states are separated by a 
gap from the massless mode [27]. Hence, the gravitational poten-
tial between two point-like sources of mass M1 and M2 located 
at the origin (z = 0) in the transverse space, will be exponentially 
suppressed as

U(r) � G
M1M2

r
+ M3∗M1M2

∑
k

e−mkr

r
ψ2

k (0). (24)

In order to study quantitatively the effects of this correction, 
it is necessary to attain the mass spectrum {mk}. To this aim, 
a numerical procedure is needed to solve the equations of the 
massive modes. Fortunately, the matrix method [33] is well appli-
cable to Sturm–Liouville problems since it well approximates the 
first eigenvalues, which are of interest. This technique was success-
Fig. 10. Normalized numerical solutions of the Schrödinger-like equation for the first 
four eigenvalues for n = 1. Although no resonant states were found, the first eigen-
state will contribute highly for the correction to the Newton’s law. Moreover, some 
eigenfunction will give trivial contribution, since ψ2(0) = 0. The solutions for higher 
values of n did not presented considerable changes.

fully applied in codimension-2 models for the gravitational [34], 
gauge [35] and fermionic fields [36]. We discretized the Eq. (21)
and the boundary condition φ′(−∞) = φ′(∞) = 0 in the domain 
[−10.0, 10.0] with uniform step-size h = 0.01 up to second or-
der truncation error. We performed the numerical analysis for the 
cases n = 1 (thick domain wall brane) and n = 100 (hybrid brane), 
since the model Lα does not differ significantly from the domain 
wall case. In both cases, the spectrum exhibited the linearly in-
creasing pattern as usual from the Kaluza–Klein theories.

Using the Numerov algorithm [37], we solved Eq. (22) for all 
mass eigenvalues obtained previously by the Matrix method. The 
Numerov method is well-known of gravity localization on thick 
branes [40]. In order to set free the values of the wave-function 
in the origin, we relinquished the unphysical boundary condition 
[25] adopting the conditions ψ ′(−∞) = ψ ′(∞) = 0. This condition 
allows different contributions of the massive modes to the correc-
tion in the Newton’s law favoring the resonant states.

It is important to mention that resonant states can happen for 
some particular energies, where incident plane waves can reso-
nante with the potential U (z) and consequently have a dispro-
portionately large value of ψk(0) [38]. However, the deformation 
parameter n does not regulate U (z) considerably. Note that, by 
construction, the hybrid brane does not possesses a parameter re-
lated to the thickness of the brane which is responsible to control 
the height of the barrier and the width of the potential well. This 
feature makes difficult the search for resonant states. We have not 
found resonant states using the well-succeeded resonance meth-
ods [38,39].

We present the numerical solutions of the Schrödinger-like 
equation for the first four eigenvalues in Fig. 10. A noteworthy 
result is that the first eigenstate will contribute highly for the cor-
rection to the Newton’s law. The subsequent normalized solutions 
present diminishing amplitudes. Moreover, some eigenfunctions 
(the k-odd solutions) will give trivial contribution, since ψ2(0) = 0. 
The spectrum and wave functions did not present notable changes 
for variations of the parameter n. This is in accordance with the 
fact that bound states can happen for masses m2 up to the maxi-
mum value of the potential barrier [27,41]. Note that the maxima 
of Un(z) in Fig. 9 are very close for n = 1 and n = 100. Hence we 
only present graphs for n = 1.

With such results, we are able to evaluate the correction to the 
Newton’s law given by Eq. (24). To this, we simplified the Planck 
mass to G = M∗ = 1. We plot in Fig. 11 the slight deviation of the 
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Fig. 11. Newtonian potential with the correction due to Kaluza–Klein modes for 
n = 1 for two unitary masses. It can be seen that the gravitational force is slightly 
increased at short distances due to the massive modes.

gravitational law due to the Kaluza–Klein modes. We may conclude 
that the gravitational force is slightly increased at short distances. 
Moreover, the phenomenology is not different if the braneworld is 
engendered by a kink or a compacton defect.

5. Conclusions

We studied the gravity localization on codimension-1 brane 
worlds engendered by compact-like kinks, the so-called hybrid 
brane. In such scenario, the thin brane behavior is present when 
the extra dimension is outside the compact domain where the en-
ergy density is non-trivial instead of asymptotically as in the usual 
thick brane models. In the literature, a mechanism which trans-
forms smoothly kinks to compactons was proposed in Ref. [18]
using two specific models, Lα and Ln . In such reference, the hy-
brid brane was constructed using only the second model. In this 
paper, we used suitable numerical methods to construct branes 
from a compact-like defect using both models and studied their 
gravity localization. We showed that the model Ln conducts to 
the hybrid brane scenario in a clearer way. Firstly, the scalar field 
in the curved spacetime φn(y) engenders the compact-like behav-
ior much clearer. Moreover, the scalar curvature Rn has a sudden
change to a constant negative value (which characterizes the AdS5
limit for the bulk) clearly revealing the hybrid behavior of the 
brane.

The study of the gravity fluctuations showed that the zero-
mode is trapped in the brane, as desired. Furthermore, the ana-
logue quantum potential revealed that the model Lα does not 
present significant changes from the usual thick brane derived 
from a kink defect. Since the hybrid brane does not possess a pa-
rameter related to its thickness, which is responsible to control the 
height of the barrier and the width of the potential well, we have 
not found resonant states using resonance methods.

The noteworthy results of the paper lay in the phenomenolog-
ical implications of the massive modes. We studied quantitatively 
the corrections to the gravitational potential between two point-
like sources of mass. By means of suitable numerical methods, we 
attained the mass spectrum of the graviton. The usual linearly in-
creasing behavior from the Kaluza–Klein theories were recovered 
for small masses which are of interest. We therefore, used such 
discrete mass spectrum to solve the correspondent Schrödinger 
equation. We showed that the first eigenstate contributes highly 
for the correction to the Newton’s law. The subsequent normalized 
solutions present diminishing amplitudes. Moreover, odd eigen-
functions will give trivial contribution, since the value of the wave 
function at the origin in the transverse space, where the core of 
the brane is located, is null. With the above results, we were able 
to evaluate the correction to the Newton’s law due to the Kaluza–
Klein tower. We concluded that the gravitational force is slightly 
increased at short distances, and the phenomenology is not differ-
ent if the braneworld is engendered by a kink or a compact defect. 
Such results may be used to match phenomenological measure-
ments of the gravitational law in particle colliders to probe warped 
extra dimensions.

The behavior of the scalar curvature that we depicted in Fig. 7
encourages us to go further on this issue, and investigate other 
braneworld scenarios, in particular the case where the brane itself 
tends to become compact along the extra dimension, as suggested 
in the very recent work of Ref. [42].
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