1,879 research outputs found
Synchronously-pumped OPO coherent Ising machine: benchmarking and prospects
The coherent Ising machine (CIM) is a network of optical parametric oscillators (OPOs) that solves for the ground state of Ising problems through OPO bifurcation dynamics. Here, we present experimental results comparing the performance of the CIM to quantum annealers (QAs) on two classes of NP-hard optimization problems: ground state calculation of the Sherrington-Kirkpatrick (SK) model and MAX-CUT. While the two machines perform comparably on sparsely-connected problems such as cubic MAX-CUT, on problems with dense connectivity, the QA shows an exponential performance penalty relative to CIMs. We attribute this to the embedding overhead required to map dense problems onto the sparse hardware architecture of the QA, a problem that can be overcome in photonic architectures such as the CIM
Action minimizing orbits in the n-body problem with simple choreography constraint
In 1999 Chenciner and Montgomery found a remarkably simple choreographic
motion for the planar 3-body problem (see \cite{CM}). In this solution 3 equal
masses travel on a eight shaped planar curve; this orbit is obtained minimizing
the action integral on the set of simple planar choreographies with some
special symmetry constraints. In this work our aim is to study the problem of
masses moving in \RR^d under an attractive force generated by a potential
of the kind , , with the only constraint to be a simple
choreography: if are the orbits then we impose the
existence of x \in H^1_{2 \pi}(\RR,\RR^d) such that q_i(t)=x(t+(i-1) \tau),
i=1,...,n, t \in \RR, where . In this setting, we first
prove that for every d,n \in \NN and , the lagrangian action
attains its absolute minimum on the planar circle. Next we deal with the
problem in a rotating frame and we show a reacher phenomenology: indeed while
for some values of the angular velocity minimizers are still circles, for
others the minima of the action are not anymore rigid motions.Comment: 24 pages; 4 figures; submitted to Nonlinearit
Edge channel mixing induced by potential steps in an integer quantum Hall system
We investigate the coherent mixing of co-propagating edge channels in a
quantum Hall bar produced by step potentials. In the case of two edge channels
it is found that, although a single step induces only a few percent mixing, a
series of steps could yield 50% mixing. In addition, a strong mixing is found
when the potential height of a single step allows a different number of edge
channels on the two sides of the step. Charge density probability has been also
calculated even for the case where the step is smoothened.Comment: final version: 7 pages, 6 figure
Experimental evidence of antiproton reflection by a solid surface
We report here experimental evidence of the reflection of a large fraction of
a beam of low energy antiprotons by an aluminum wall. This derives from the
analysis of a set of annihilations of antiprotons that come to rest in rarefied
helium gas after hitting the end wall of the apparatus. A Monte Carlo
simulation of the antiproton path in aluminum indicates that the observed
reflection occurs primarily via a multiple Rutherford-style scattering on Al
nuclei, at least in the energy range 1-10 keV where the phenomenon is most
visible in the analyzed data. These results contradict the common belief
according to which the interactions between matter and antimatter are dominated
by the reciprocally destructive phenomenon of annihilation.Comment: 5 pages with 5 figure
On the muon neutrino mass
During the runs of the PS 179 experiment at LEAR of CERN, we photographed an
event of antiproton-Ne absorption, with a complete pi+ -> mu+ ->e+ chain. From
the vertex of the reaction a very slow energy pi+ was emitted. The pi+ decays
into a mu+ and subsequently the mu+ decays into a positron. At the first decay
vertex a muon neutrino was emitted and at the second decay vertex an electron
neutrino and a muon antineutrino. Measuring the pion and muon tracks and
applying the momentum and energy conservation and using a classical statistical
interval estimator, we obtained an experimental upper limit for the muon
neutrino mass: m_nu < 2.2 MeV at a 90% confidence level. A statistical analysis
has been performed of the factors contributing to the square value of the
neutrino mass limit.Comment: 18 pages, 5 eps figure
Using EMA to benchmark environmental costs – theory and experience from four countries through the UNIDO TEST project
Existence and Stability of Symmetric Periodic Simultaneous Binary Collision Orbits in the Planar Pairwise Symmetric Four-Body Problem
We extend our previous analytic existence of a symmetric periodic
simultaneous binary collision orbit in a regularized fully symmetric equal mass
four-body problem to the analytic existence of a symmetric periodic
simultaneous binary collision orbit in a regularized planar pairwise symmetric
equal mass four-body problem. We then use a continuation method to numerically
find symmetric periodic simultaneous binary collision orbits in a regularized
planar pairwise symmetric 1, m, 1, m four-body problem for between 0 and 1.
Numerical estimates of the the characteristic multipliers show that these
periodic orbits are linearly stability when , and are
linearly unstable when .Comment: 6 figure
Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum
We present evidence showing how antiprotonic hydrogen, the quasistable
antiproton-proton (pbar-p) bound system, has been synthesized following the
interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested
Penning trap environment. From a careful analysis of the spatial distributions
of antiproton annihilation events, evidence is presented for antiprotonic
hydrogen production with sub-eV kinetic energies in states around n=70, and
with low angular momenta. The slow antiprotonic hydrogen may be studied using
laser spectroscopic techniques.Comment: 5 pages with 4 figures. Published as Phys. Rev. Letters 97, 153401
(2006), in slightly different for
Detection of antihydrogen annihilations with a Si-micro-strip and pure CsI detector
In 2002, the ATHENA collaboration reported the creation and detection of cold
(~15 K) antihydrogen atoms [1]. The observation was based on the complete
reconstruction of antihydrogen annihilations, simultaneous and spatially
correlated annihilations of an antiproton and a positron. Annihilation
byproducts are measured with a cylindrically symmetric detector system
consisting of two layers of double sided Si-micro-strip modules that are
surrounded by 16 rows of 12 pure CsI crystals (13 x 17.5 x 17 mm^3). This paper
gives a brief overview of the experiment, the detector system, and event
reconstruction.
Reference 1. M. Amoretti et al., Nature 419, 456 (2002).Comment: 7 pages, 5 figures; Proceedings for the 8th ICATPP Conference on
Astroparticle, Particle, Space Physics, Detectors and Medical Physics
Applications (Como, Italy October 2003) to be published by World Scientific
(style file included
- …
