1,020 research outputs found

    Measurement of the rate of stellar tidal disruption flares

    Full text link
    We report an observational estimate of the rate of stellar tidal disruption flares (TDFs) in inactive galaxies, based on a successful search for these events among transients in galaxies using archival SDSS multi-epoch imaging data (Stripe 82). This search yielded 186 nuclear flares in galaxies, of which two are excellent TDF candidates. Because of the systematic nature of the search, the very large number of galaxies, the long time of observation, and the fact that non-TDFs were excluded without resorting to assumptions about TDF characteristics, this study provides an unparalleled opportunity to measure the TDF rate. To compute the rate of optical stellar tidal disruption events, we simulate our entire pipeline to obtain the efficiency of detection. The rate depends on the light curves of TDFs, which are presently still poorly constrained. Using only the observed part of the SDSS light curves gives a model-independent upper limit to the optical TDF rate: < 2 10^-4 per year per galaxy (90% CL). We develop three empirical models of the light curves, based on the two SDSS light curves and two more recent and better-sampled Pan-STARRS TDF light curves, leading to our best-estimate of the rate: (1.5 - 2.0)_{-1.3}^{+2.7} 10^-5 per year per galaxy. We explore the modeling uncertainties by considering two theoretically motivated light curve models, as well as two different relationships between black hole mass and galaxy luminosity, and two different treatments of the cutoff in the visibility of TDFs at large black hole mass. From this we conclude that these sources of uncertainty are not significantly larger than the statistical ones. Our results are applicable for galaxies hosting black holes with mass in the range of few million to 10^8 solar masses, and translates to a volumetric TDF rate of (4 - 8) 10^-8 per year per cubic Mpc.Comment: Published in Ap

    Evolution of associations between Cymothoe butterflies and their Rinorea host plants in tropical Africa

    Get PDF
    This thesis aimed to elucidate the evolutionary history of the associations between Cymothoeforest butterflies (Nymphalidae, Limenitidinae) and their Rinoreahost plants (Violaceae) in tropical Africa. Insects are by far the most diverse group of multicellular organisms on earth. Because most insect species are herbivores, understanding the evolution of interactions between herbivorous insects and their host plants is therefore crucial to comprehend global patterns in terrestrial biodiversity. The Cymothoe-Rinoreasystem is especially suitable for untangling processes shaping patterns of insect-host plant associations because of its high level of specificity (mostly monophagous) and the large number of related species involved (33 insect herbivores and 32 hosts). Obviously, any evolutionary study relies on a solid classification and taxonomy of the organisms under study. Unfortunately, however, in Cymothoeas well as Rinorea, taxonomy and classification is still partly unresolved. To improve taxonomy of Cymothoeand facilitate efficient identification of immature specimens found on Rinoreahost plants, we generated an extensive dataset of 1204 DNA barcode sequences (Chapter 2). Application of a novel taxonomic decision pipeline for integrating DNA barcodes with morphology and biogeography proved instrumental for solving taxonomic problems in Cymothoeand five taxa within Cymothoecould be confidently raised to species level. In addition, our DNA barcode data set allowed for the identification of 42 immature specimens from six different countries, significantly increasing the data on Cymothoehost plant associations. Nevertheless, our results also demonstrated that not all species of Cymothoecan be confidently delimited or identified. We hypothesize that this is probably due to incomplete lineage sorting and introgression (the latter possibly mediated through Wolbachiaendosymbionts) between recently diverged Cymothoespecies. In order to assess what are the best methods for matching DNA barcodes from recently diverged species, we compared six methods in their ability to correctly match DNA barcodes from selected published empirical data sets as well as simulated data (Chapter 3). Our results showed that, even though recently diverged species pose a significant problem for effective DNA barcoding, sensitive similarity-based and diagnostic methods can significantly improve identification performance compared with the commonly used tree-based methods. To improve classification and clarify the biogeographic history of Rinorea, we presented an updated phylogenetic tree of Rinoreawith increased taxonomic sampling, using plastid as well as nuclear DNA sequences (Chapter 5). Phylogenetic relationships inferred from nuclear DNA data were generally congruent with those based on evidence from plastid haplotypes from earlier studies of Rinoreaand helped resolve additional clades, some of which warrant further taxonomic study. Divergence time estimations indicated that Rinoreaoriginated in the Neotropics and reached Africa in the Eocene through trans-Atlantic dispersal. From Africa, Rinoreasubsequently dispersed into Asia in the Oligocene or early Miocene, and colonized Madagascar multiple times independently within a relatively recent time scale (Pliocene), suggesting that factors governing the independent colonizations of Rinoreato Madagascar may have been similar. In Chapter 4 we assessed whether differential rates of net species diversification in the African butterfly sister genera Harma(1 species) and Cymothoe(approximately 82 species) could best be explained by shifts to novel host plants (from Achariaceae to Rinorea) or by environmental factors such as changing climate. We generated the first time-calibrated species-level molecular phylogenetic tree of Harmaand Cymothoeand found that, after their divergence in the Miocene (15 Mya), net species diversification was low during the first 7 Myr. Coinciding with the onset of diversification of Cymothoein the late Miocene (around 7.5 Mya) there was a sharp and significant increase in diversification rate, suggesting a rapid radiation. This increased rate did not correlate with host plant transition from Achariaceae to Rinoreahost plants, but rather with a period of global cooling and desiccation, indicating that tropical forest fragmentation may well have driven the elevated diversification rates in Cymothoe. Finally, in Chapter 6 we integrated the time-calibrated phylogenetic evidence from Cymothoeand Rinoreapresented in chapters 4 and 5 with updated host association records from the field, with the aim to distinguish between alternative scenarios for the evolution of insect-host plant associations. Our results showed that: (i) divergences among extant Cymothoeare more recent than those among their associated Rinoreahosts, suggesting asynchronous diversification of Cymothoeherbivores onto already diversified clades within African Rinorea; (ii) phylogenetic trees of Cymothoeand their associated Rinoreahost plants are discordant and current associations between Cymothoeherbivores and their Rinoreahosts have developed primarily through a process of host shifting rather than by cospeciation; and (iii) related Cymothoetend to feed on related Rinoreahosts. Based on the available data, we propose a recent origin of Rinorea{}-feeding by Cymothoebutterflies with a single colonization of pre-existing lineages in the late Miocene. Current associations are best explained by a predominance of shifts among related plants, probably due to constraints in larval physiology and oviposition behaviour. Overall, these findings are in agreement with a growing body of substantial evidence to suggest that divergences of herbivorous insects and their host plants are asynchronous, and that evolutionary dynamics of hosts and parasites do not favour cospeciation. Insect-plant interactions are receiving increasing attention because of their importance in crop production and protection. At the same time, an increasing number of insects and plants that have evolved in separation are currently coming into contact due to human activities and climatic changes. It is therefore tempting to find implications of our findings for insect-host plant associations for agricultural systems (Chapter 7). Based on our results, one might predict that insects will only become pests of crops that are closely related to their natural host. Extrapolating our findings to an agricultural setting is difficult, however, because of the difference in selective pressures between natural and agricultural ecosystems.</p

    Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li

    Get PDF
    We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32±\pm4 days. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similar objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.Comment: Publish in ApJ Letter

    Optical Discovery of Probable Stellar Tidal Disruption Flares

    Get PDF
    Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures of 2 × 10^4 K and observed peak luminosities of M_g = –18.3 and –20.4 (νL_ν = 5 × 10^(42), 4 × 10^(43) erg s^(–1), in the rest frame); their cooling rates are very low, qualitatively consistent with expectations for tidal disruption flares. The properties of the TDE candidates are examined using (1) SDSS imaging to compare them to other flares observed in the search, (2) UV emission measured by GALEX, and (3) spectra of the hosts and of one of the flares. Our pipeline excludes optically identifiable AGN hosts, and our variability monitoring over nine years provides strong evidence that these are not flares in hidden AGNs. The spectra and color evolution of the flares are unlike any SN observed to date, their strong late-time UV emission is particularly distinctive, and they are nuclear at high resolution arguing against these being first cases of a previously unobserved class of SNe or more extreme examples of known SN types. Taken together, the observed properties are difficult to reconcile with an SN or an AGN-flare explanation, although an entirely new process specific to the inner few hundred parsecs of non-active galaxies cannot be excluded. Based on our observed rate, we infer that hundreds or thousands of TDEs will be present in current and next-generation optical synoptic surveys. Using the approach outlined here, a TDE candidate sample with O(1) purity can be selected using geometric resolution and host and flare color alone, demonstrating that a campaign to create a large sample of TDEs, with immediate and detailed multi-wavelength follow-up, is feasible. A by-product of this work is quantification of the power spectrum of extreme flares in AGNs
    corecore