3,526 research outputs found
Recommended from our members
Processing of Silicon Carbide by Laser Micro Sintering
Silicon carbide – a solid with covalent bonds - is conventionally synthesized via the Acheson
process. Usually solid bodies of silicon carbide with definite shapes are generated from the
grained material via hot isostatic pressing or liquid phase sintering. Both processes are
conducted under well-controlled temperature regimes. Applying the freeform fabrication
technique “Laser Micro Sintering” poses a big challenge to experimental skill due to the nonequilibrium conditions that are characteristic features of laser material processing.
Successive layers SiC layers with a thickness of 1μm were processed with coherent
radiation of 1064 nm. The specific behavior of two different silicon carbide powders - one of
them blended with additives - are reported along with interpretational approaches.Mechanical Engineerin
Oxygen and carbon isotope and Sr/Ca signatures of high-latitude Permian to Jurassic calcite fossils from New Zealand and New Caledonia
Article available online 12 November 2015This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Calcite fossils from New Zealand and New Caledonia provide insight into the Permian to Jurassic climatic history of Southern High Latitudes (southern HL) and Triassic Southern Intermediate Latitudes (southern IL). These results permit comparison with widely studied, coeval sections in Low Latitudes (LL) and IL. Oxygen isotope ratios of well-preserved shell materials indicate a partially pronounced Sea Surface Temperature (SST) gradient in the Permian, whereas for the Triassic no indication of cold climates in the southern HL is found. The Late Jurassic of New Zealand is characterized by a slight warming in the Oxfordian–Kimmeridgian and a subsequent cooling trend in the Tithonian. Systematic variations in the δ13C values of southern HL samples are in concert with those from LL sections and confirm the global nature of the carbon isotope signature and changes in the long-term carbon cycle reported earlier. Systematic changes of Sr/Ca ratios in Late Triassic brachiopods, falling from 1.19 mmol/mol in the Oretian (early Norian) to 0.67 mmol/mol in the Warepan (late Norian) and subsequently increasing to 1.10 mmol/mol in the Otapirian (~ Rhaetian), are observed. Also Sr/Ca ratios of Late Jurassic belemnite genera Belemnopsis and Hibolithes show synchronous changes in composition that may be attributed to secular variations in the seawater Sr/Ca ratio. For the two belemnite genera an increase from 1.17 mmol/mol in the Middle Heterian (~ Oxfordian) to 1.78 mmol/mol in the Mangaoran (~ late Middle Tithonian) and a subsequent decrease to 1.51 mmol/mol in the Waikatoan (~ Late Tithonian) is documented.This project was
funded by the Danish Council for Independent Research–
Natural Sciences (project 09-072715), the Carlsberg
Foundation (project nr 2011-01-0737) provided for CK,
and by the University of Copenhagen (IGN). CVU acknowledges
funding from the German National Academy
of Sciences – Leopoldina (grant nr LPDS 2014-08
Non-Statistical Effects in Neutron Capture
There have been many reports of non-statistical effects in neutron-capture
measurements. However, reports of deviations of reduced-neutron-width
distributions from the expected Porter-Thomas (PT) shape largely have been
ignored. Most of these deviations have been reported for odd-A nuclides.
Because reliable spin (J) assignments have been absent for most resonances for
such nuclides, it is possible that reported deviations from PT might be due to
incorrect J assignments. We recently developed a new method for measuring spins
of neutron resonances by using the DANCE detector at LANSCE. Measurements made
with a 147Sm sample allowed us to determine spins of almost all known
resonances below 1 keV. Furthermore, analysis of these data revealed that the
reduced-neutron-width distribution was in good agreement with PT for resonances
below 350 eV, but in disagreement with PT for resonances between 350 and 700
eV. Our previous (n,alpha) measurements had revealed that the alpha strength
function also changes abruptly at this energy. There currently is no known
explanation for these two non-statistical effects. Recently, we have developed
another new method for determining the spins of neutron resonances. To
implement this technique required a small change (to record pulse-height
information for coincidence events) to a much simpler apparatus: A pair of C6D6
gamma-ray detectors which we have employed for many years to measure
neutron-capture cross sections at ORELA. Measurements with a 95Mo sample
revealed that not only does the method work very well for determining spins,
but it also makes possible parity assignments. Taken together, these new
techniques at LANSCE and ORELA could be very useful for further elucidation of
non-statistical effects.Comment: 8 pages, 3 figures, for proceedings of CGS1
Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016
Nitryl chloride (ClNO2) is a radical reservoir species that releases chlorine radicals upon photolysis. An integrated analysis of the impact of ClNO2 on regional photochemistry in the Seoul metropolitan area (SMA) during the Korea-United States Air Quality Study (KORUS-AQ) 2016 field campaign is presented. Comprehensive multiplatform observations were conducted aboard the NASA DC-8 and at two ground sites (Olympic Park, OP; Taehwa Research Forest, TRF), representing an urbanized area and a forested suburban region, respectively. Positive correlations between daytime Cl2 and ClNO2 were observed at both sites, the slope of which was dependent on O3 levels. The possible mechanisms are explored through box model simulations constrained with observations. The overall diurnal variations in ClNO2 at both sites appeared similar but the nighttime variations were systematically different. For about half of the observation days at the OP site the level of ClNO2 increased at sunset but rapidly decreased at around midnight. On the other hand, high levels were observed throughout the night at the TRF site. Significant levels of ClNO2 were observed at both sites for 4-5 h after sunrise. Airborne observations, box model calculations, and back-trajectory analysis consistently show that these high levels of ClNO2 in the morning are likely from vertical or horizontal transport of air masses from the west. Box model results show that chlorine-radical-initiated chemistry can impact the regional photochemistry by elevating net chemical production rates of ozone by 25% in the morning
- …
