1,688 research outputs found

    Analytical interfacial layer model for the capacitance and electrokinetics of charged aqueous interfaces

    Get PDF
    We construct an analytical model to account for the influence of the subnanometer-wide interfacial layer on the differential capacitance and the electro-osmotic mobility of solid–electrolyte interfaces. The interfacial layer is incorporated into the Poisson–Boltzmann and Stokes equations using a box model for the dielectric properties, the viscosity, and the ionic potential of mean force. We calculate the differential capacitance and the electro-osmotic mobility as a function of the surface charge density and the salt concentration, both with and without steric interactions between the ions. We compare the results from our theoretical model with experimental data on a variety of systems (graphite and metallic silver for capacitance and titanium oxide and silver iodide for electro-osmotic data). The differential capacitance of silver as a function of salinity and surface charge density is well reproduced by our theory, using either the width of the interfacial layer or the ionic potential of mean force as the only fitting parameter. The differential capacitance of graphite, however, needs an additional carbon capacitance to explain the experimental data. Our theory yields a power-law dependence of the electro-osmotic mobility on the surface charge density for high surface charges, reproducing the experimental data using both the interfacial parameters extracted from molecular dynamics simulations and fitted interfacial parameters. Finally, we examine different types of hydrodynamic boundary conditions for the power-law behavior of the electro-osmotic mobility, showing that a finite-viscosity layer explains the experimental data better than the usual hydrodynamic slip boundary condition. Our analytical model thus allows us to extract the properties of the subnanometer-wide interfacial layer by fitting to macroscopic experimental data

    Gallium self-interstitial relaxation in Gallium Arsenide: an {ab initio} characterization

    Full text link
    Ga interstitials in GaAs (IGaI_{Ga}) are studied using the local-orbital {ab-initio} code SIESTA in a supercell of {216+1} atoms. Starting from eight different initial configurations, we find five metastable structures: the two tetrahedral sites in addition to the 110-split[Ga−As]\mathrm{_{[Ga-As]}}, 111-split[Ga−As]\mathrm{_{[Ga-As]}}, and 100-split[Ga−Ga]\mathrm{_{[Ga-Ga]}}. Studying the competition between various configuration and charges of IGaI_{Ga}, we find that predominant gallium interstitials in GaAs are charged +1, neutral or at most -1 depending on doping conditions and prefer to occupy the tetrahedral configuration where it is surrounded by Ga atoms. Our results are in excellent agreement with recent experimental results concerning the dominant charge of IGaI_{Ga}, underlining the importance of finite size effects in the calculation of defects.Comment: v1) 18 pages, 5 figures, submitted to PRB (Latex preprint version) v2) 9 pages, 5 figures, reviewed version resubmitted to PRB (correction to equation 1, some changes and reformulations, minor grammatical and typo corrections, added reference

    Power-law electrokinetic behavior as a direct probe of effective surface viscosity

    Get PDF
    An exact solution to the Poisson-Boltzmann and Stokes equations is derived to describe the electric double layer with inhomogeneous dielectric and viscosity profiles in a lateral electric field. In the limit of strongly charged surfaces and low salinity, the electrokinetic flow magnitude follows a power law as a function of the surface charge density. Remarkably, the power-law exponent is determined by the interfacial dielectric constant and viscosity, the latter of which has eluded experimental determination. Our approach provides a novel method to extract the effective interfacial viscosity from standard electrokinetic experiments. We find good agreement between our theory and experimental data

    The effects of ion adsorption on the potential of zero charge and the differential capacitance of charged aqueous interfaces

    Get PDF
    Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson–Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights

    Nanomolar Surface-Active Charged Impurities Account for the Zeta Potential of Hydrophobic Surfaces

    Get PDF
    The electrification of hydrophobic surfaces is an intensely debated subject in physical chemistry. We theoretically study the ζ potential of hydrophobic surfaces for varying pH and salt concentration by solving the Poisson–Boltzmann and Stokes equations with individual ionic adsorption affinities. Using the ionic surface affinities extracted from the experimentally measured surface tension of the air–electrolyte interface, we first show that the interfacial adsorption and repulsion of small inorganic ions such as H3O+, OH–, HCO3–, and CO32– cannot account for the ζ potential observed in experiments because the surface affinities of these ions are too small. Even if we take hydrodynamic slip into account, the characteristic dependence of the ζ potential on pH and salt concentration cannot be reproduced. Instead, to explain the sizable experimentally measured ζ potential of hydrophobic surfaces, we assume minute amounts of impurities in the water and include the impurities’ acidic and basic reactions with water. We find good agreement between our predictions and the reported experimental ζ potential data of various hydrophobic surfaces if we account for impurities that consist of a mixture of weak acids (pKa = 5–7) and weak bases (pKb = 12) at a concentration of the order of 10–7 M

    Impurity effects at hydrophobic surfaces

    Get PDF
    The effective charge of hydrophobic surfaces and in particular of the air–water interface is a crucial parameter for electrochemistry, colloidal chemistry and interfacial science, but different experiments give conflicting estimates. Zeta-potential and disjoining-pressure measurements point to a strongly negative surface charge, often interpreted as being due to adsorbing hydroxide ions. In contrast, surface tension measurements of acids and bases suggest the hydronium ion to be surface active, in agreement with some surface-specific non-linear spectroscopy results. The air–electrolyte interfacial tension exhibits a characteristic minimum at millimolar electrolyte concentration for all salts, the so-called Jones–Ray effect, which points to competitive adsorption mechanisms present in dilute electrolyte solutions. We show that all these puzzling experimental findings can be explained by the presence of trace amounts of surface-active charged impurities, most likely anionic surfactants

    Possibility of valence-fluctuation mediated superconductivity in Cd-doped CeIrIn5_5 probed by In-NQR

    Full text link
    We report on a pressure-induced evolution of exotic superconductivity and spin correlations in CeIr(In1−x_{1-x}Cdx_{x})5_5 by means of In-Nuclear-Quadrupole-Resonance (NQR) studies. Measurements of an NQR spectrum and nuclear-spin-lattice-relaxation rate 1/T11/T_1 have revealed that antiferromagnetism induced by the Cd-doping emerges locally around Cd dopants, but superconductivity is suddenly induced at TcT_c = 0.7 and 0.9 K at 2.34 and 2.75 GPa, respectively. The unique superconducting characteristics with a large fraction of the residual density of state at the Fermi level that increases with TcT_c differ from those for anisotropic superconductivity mediated by antiferromagnetic correlations. By incorporating the pressure dependence of the NQR frequency pointing to the valence change of Ce, we suggest that unconventional superconductivity in the CeIr(In1−x_{1-x}Cdx_{x})5_5 system may be mediated by valence fluctuations.Comment: Accepted for publication in Physical Review Letter

    Consistent description of ion-specificity in bulk and at interfaces by solvent implicit simulations and mean-field theory

    Get PDF
    Solvent-implicit Monte Carlo (MC) simulations and mean-field theory are used to predict activity coefficients and excess interfacial tensions for NaF, NaCl, NaI, KF, KCl, and KI solutions in good agreement with experimental data over the entire experimentally available concentration range. The effective ionic diameters of the solvent-implicit simulation model are obtained by fits to experimental activity coefficient data. The experimental activity coefficients at high salt concentrations are only reproduced if the ion-specific concentration-dependent decrement of the dielectric constant is included. The dielectric-constant dependent contribution of the single-ion solvation free energy to the activity coefficient is significant and is included. To account for the ion-specific excess interfacial tension of salt solutions, in addition to nonideal solution effects and the salt-concentration-dependent dielectric decrement, an ion-specific ion–interface interaction must be included. This ion–interface interaction, which acts in addition to the dielectric image-charge repulsion, is modeled as a box potential, is considerably more long-ranged than the ion radius, and is repulsive for all ions considered except iodide, in agreement with previous findings and arguments. By comparing different models that include or exclude bulk non-ideal solution behavior, dielectric decrement effects, and ion– interface interaction potentials, we demonstrate how bulk and interfacial ion-specific effects couple and partially compensate each other. Our MC simulations, which correctly include ionic correlations and interfacial dielectric image-charge repulsion, are used to determine effective ion–surface interaction potentials that can be used in a modified Poisson–Boltzmann theory

    Consistent description of ion-specificity in bulk and at interfaces by solvent implicit simulations and mean-field theory

    Get PDF
    Solvent-implicit Monte Carlo (MC) simulations and mean-field theory are used to predict activity coefficients and excess interfacial tensions for NaF, NaCl, NaI, KF, KCl, and KI solutions in good agreement with experimental data over the entire experimentally available concentration range. The effective ionic diameters of the solvent-implicit simulation model are obtained by fits to experimental activity coefficient data. The experimental activity coefficients at high salt concentrations are only reproduced if the ion-specific concentration-dependent decrement of the dielectric constant is included. The dielectric-constant dependent contribution of the single-ion solvation free energy to the activity coefficient is significant and is included. To account for the ion-specific excess interfacial tension of salt solutions, in addition to non-ideal solution effects and the salt-concentration-dependent dielectric decrement, an ion-specific ion–interface interaction must be included. This ion–interface interaction, which acts in addition to the dielectric image-charge repulsion, is modeled as a box potential, is considerably more long-ranged than the ion radius, and is repulsive for all ions considered except iodide, in agreement with previous findings and arguments. By comparing different models that include or exclude bulk non-ideal solution behavior, dielectric decrement effects, and ion–interface interaction potentials, we demonstrate how bulk and interfacial ion-specific effects couple and partially compensate each other. Our MC simulations, which correctly include ionic correlations and interfacial dielectric image-charge repulsion, are used to determine effective ion–surface interaction potentials that can be used in a modified Poisson–Boltzmann theory

    Virtual photon structure functions and positivity constraints

    Full text link
    We study the three positivity constraints among the eight virtual photon structure functions, derived from the Cauchy-Schwarz inequality and which are hence model-independent. The photon structure functions obtained from the simple parton model show quite different behaviors in a massive quark or a massless quark case, but they satisfy, in both cases, the three positivity constraints. We then discuss an inequality which holds among the unpolarized and polarized photon structure functions F1γF_1^\gamma, g1γg_1^\gamma and WTTτW_{TT}^\tau, in the kinematic region Λ2≪P2≪Q2\Lambda^2\ll P^2 \ll Q^2, where −Q2(−P2)-Q^2 (-P^2) is the mass squared of the probe (target) photon, and we examine whether this inequality is satisfied by the perturbative QCD results.Comment: 24 pages, 13 eps figure
    • …
    corecore