1,004 research outputs found

    Dense Clouds near the Central Engine of Active Galactic Nuclei

    Get PDF
    A model is presented which assumes the existence of cold dense clouds near the central engine of Active Galactic Nuclei (AGNs). The effects of such clouds on the observed spectrum are explored. It is shown that this model is consistent with the complicated observed spectra and variability behavior of most extensively studied Seyfert nuclei. The results are compared with other proposed models. The existing observational evidence appears to support the "cloud-model.

    Effects of Shocks on Emission from Central Engines of Active Galactic Nuclei. I

    Get PDF
    In this paper we show that perturbations of the accretion flow within the central engines of some active galactic nuclei (AGNS) are likely to form shock waves in the accreting plasma. Such shocks, which may be either collisional or collisionless, can contribute to the observed high-energy temporal and spectral variability. Our rationale is the following: Observations show that the continuum emission probably originates in an optically thin, hot plasma in the AGN central engine. The flux and spectrum from this hot plasma varies significantly over light crossing timescales. Several authors have suggested that macroscopic perturbations contained within this plasma are the sources of this variability. In order to produce the observed emission the perturbations must be radiatively coupled with the optically thin hot matter and must also move with high velocities. We suggest that shocks, which can be very effective in randomizing the bulk motion of the perturbations, are responsible for this coupling. Shocks should form in the central engine, because the temperatures and magnetic fields are probably reduced below their virial values by radiative dissipation. Perturbations moving at Keplerian speeds, or strong non-linear excitations, result in supersonic and super-Alfvenic velocities leading to shock waves within the hot plasma. We show that even a perturbation smaller than the emitting region can form a shock that significantly modifies the continuum emission in an AGN, and that the spectral and temporal variability from such a shock generally resembles those of radio-quiet AGNS. As an example, the shock inducing perturbation in our model is a small main-sequence star, the capturing and eventual accretion of which are known to be a plausible process. We argue that shocks in the central engine may also provide a natural triggering mechanism for the "cold" component of Guilbert & Rees two-phase medium and an efficient mecha- nism for angular momentum transfer. Current and future missions, such as ASCA, XTE, XMM, AXAF, and ASTRO-E may determine the importance of shock-related emission from the central engines of AGNS

    Confronting Neutron Star Cooling Theories with New Observations

    Full text link
    With the successful launch of Chandra and XMM/Newton X-ray space missions combined with the lower-energy band observations, we are in the position where careful comparison of neutron star cooling theories with observations will make it possible to distinguish among various competing theories. For instance, the latest theoretical and observational developments already exclude both nucleon and kaon direct URCA cooling. In this way we can now have realistic hope for determining various important properties, such as the composition, degree of superfluidity, the equation of state and steller radius. These developments should help us obtain better insight into the properties of dense matter.Comment: 11 pages, 1 figur

    Evaporation of Lennard-Jones Fluids

    Full text link
    Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/TcT/T_c, where TcT_c is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.Comment: revised version, 15 pages, 15 figures, to appear in J. Chem. Phy

    Superfluid Friction and Late-time Thermal Evolution of Neutron Stars

    Get PDF
    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×1063\times 10^6 and 2×1072\times 10^7 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ωˉ0.6\bar\omega\sim 0.6 rad s1^{-1} for PSR 1929+10 and 0.02\sim 0.02 rad s1^{-1} for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by pinning of superfluid vortices to the inner crust lattice with strengths of \sim 1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally-activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (10\sim 10 rad s1^{-1}), a feedback instability could occur in stars younger than 105\sim 10^5 yr causing oscillations of the temperature and spin-down rate over a period of 0.3tage\sim 0.3 t_{\rm age}. For stars older than 106\sim 10^6 yr, however, vortex creep occurs through quantum tunneling, and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.Comment: 26 pages, 1 figure, submitted to Ap

    Thermal X-Ray Pulses Resulting From Pulsar Glitches

    Get PDF
    The non-spherically symmetric transport equations and exact thermal evolution model are used to calculate the transient thermal response to pulsars. The three possible ways of energy release originated from glitches, namely the `shell', `ring' and `spot' cases are compared. The X-ray light curves resulting from the thermal response to the glitches are calculated. Only the `spot' case and the `ring' case are considered because the `shell' case does not produce significant modulative X-rays. The magnetic field (B\vec B) effect, the relativistic light bending effect and the rotational effect on the photons being emitted in a finite region are considered. Various sets of parameters result in different evolution patterns of light curves. We find that this modulated thermal X-ray radiation resulting from glitches may provide some useful constraints on glitch models.Comment: 48 pages, 20 figures, submitted to Ap

    Crystalline-Electric-Field Effect on the Resistivity of Ce-based Heavy Fermion Systems

    Full text link
    The behavior of the resistivity of Ce-based heavy fermion systems is studied using a 1/NN-expansion method a la Nagoya, where NN is the spin-orbital degeneracy of f-electrons. The 1/NN-expansion is performed in terms of the auxiliary particles, and a strict requirement of the local constraints is fulfilled for each order of 1/N. The physical quantities can be calculated over the entire temperature range by solving the coupled Dyson equations for the Green functions self-consistently at each temperature. This 1/N-expansion method is known to provide asymptotically exact results for the behavior of physical quantities in both low- and high-energy regions when it is applied to a single orbital periodic Anderson model (PAM). On the basis of a generalized PAM including crystalline-electric-field splitting with a single conduction band, the pressure dependence of the resistivity is calculated by parameterizing the effect of pressure as the variation of the hybridization parameter between the conduction electrons and f-electrons. The main result of the present study is that the double-peak structure of the TT-dependence of the resistivity is shown to merge into a single-peak structure with increasing pressure.Comment: 37 pages, 22 figure

    Neutrino and axion emissivities of neutron stars from nucleon-nucleon scattering data

    Get PDF
    Neutrino and axion production in neutron stars occurs mainly as bremsstrahlung from nucleon-nucleon (NN) scattering. The energy radiated via neutrinos or axions is typically very small compared to other scales in the two-nucleon system. The rate of emission of such "soft" radiation is directly related to the on-shell NN amplitude, and thereby to the NN experimental data. This facilitates the model-independent calculation of the neutrino and axion radiation rates which is presented here. We find that the resultant rates are a factor of four below earlier estimates based on a one-pion-exchange NN amplitude.Comment: 5 pages, 2 figures, revtex, uses epsfig.sty. Revised version has minor modifications to the text and references, as well as some changes to the numerical results. The conclusions are unchange

    Isothermal Shock Formation in Non-Equatorial Accretion Flows around Kerr Black Holes

    Full text link
    We explore isothermal shock formation in non-equatorial, adiabatic accretion flows onto a rotating black hole, with possible application to some active galactic nuclei (AGNs). The isothermal shock jump conditions as well as the regularity condition, previously developed for one-dimensional (1D) flows in the equatorial plane, are extended to two-dimensional (2D), non-equatorial flows, to explore possible geometrical effects. The basic hydrodynamic equations with these conditions are self-consistently solved in the context of general relativity to explore the formation of stable isothermal shocks. We find that strong shocks are formed in various locations above the equatorial plane, especially around a rapidly-rotating black hole with the prograde flows (rather than a Schwarzschild black hole). The retrograde flows are generally found to develop weaker shocks. The energy dissipation across the shock in the hot non-equatorial flows above the cooler accretion disk may offer an attractive illuminating source for the reprocessed features, such as the iron fluorescence lines, which are often observed in some AGNs.Comment: 22 pages with 11 figures, presented at 5th international conference on high energy density laboratory astrophysics in Tucson, Arizona. accepted to Ap
    corecore