50 research outputs found
Fungal model systems and the elucidation of pathogenicity determinants
Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.Peer reviewedPublisher PD
Fungal model systems and the elucidation of pathogenicity determinants
This is the final version of the article. Available from Elsevier via the DOI in this record.Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity.This review was carried out by members of the EU-Initial Training Network Ariadne (PITN-GA-2009-237936), which provided financial support for C.B., S.D., M.E.G., E.G., E.M., P.V.M., M.M., V.N., M.F.A.N., T.O., M.O.R., K.S. and L.W
Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites
The topotactic phase transition in SrCoOx (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO2.5, however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoOx is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions
Recommended from our members
Frustrated spin correlations in diluted spin ice Ho2-xLaxTi2O7
We have studied the evolution of the structural properties as well as the static and dynamic spin correlations of spin ice Ho2Ti2O7, where Ho was partially replaced by non-magnetic La. The crystal structure of diluted samples Ho2-xLaxTi2O7 was characterized by x-ray and neutron diffraction and by Ho L-III-edge and Ti K-edge extended x-ray absorption fine structure (EXAFS) measurements. It is found that the pyrochlore structure remains intact until about x = 0.3, but a systematic increase in local disorder with increasing La concentration is observed in the EXAFS data, especially from the Ti K edge.Quasi-elastic neutron scattering and ac susceptibility measurements show that, in x<= 0.4 samples at temperatures above macroscopic freezing, the spin -spin correlations are short ranged and dynamic in nature. The main difference with pure spin ice in the dynamics is the appearance of a second, faster, relaxation process
Effects of marital/dependency status on reenlistment behavior of second-term enlisted females.
This thesis investigates the relationship of reenlistment decisions of second-term enlisted women in the military to their marital and dependent status, using individual-level data from the 1985 DoD Survey of Officer and Enlisted Personnel. Actual reenlistment status (December 1988) of each survey respondent was merged with the data set. Logit analysis was used to estimate the likelihood of a respondent choosing to reenlist given her set of individual characteristics. Separate logit models were estimated for the following groups of second-term personnel: single women without children, single women with children, married women without children, and married women with children. Certain variables affected all groups similarly (pay grade, minority status, perception of civilian job alternatives). Others exerted differential impact on subgroups (job satisfaction, traditionality of job). Results illustrated differential reenlistment behavior based upon the presence of children. Results may be used to target reenlistment incentives for specified marital/dependent status groups.http://archive.org/details/effectsofmarital00edwaLieutenant, United States NavyApproved for public release; distribution is unlimited
Glycoprotein gene truncation in avian metapneumovirus subtype C isolates from the United States
The length of the published glycoprotein (G) gene sequences of avian metapneumovirus subtype-C (aMPV-C) isolated from domestic turkeys and wild birds in the United States (1996–2003) remains controversial. To explore the G gene size variation in aMPV-C by the year of isolation and cell culture passage levels, we examined 21 turkey isolates of aMPV-C at different cell culture passages. The early domestic turkey isolates of aMPV-C (aMPV/CO/1996, aMPV/MN/1a-b, and 2a-b/97) had a G gene of 1,798 nucleotides (nt) that coded for a predicted protein of 585 amino acids (aa) and showed >97% nt similarity with that of aMPV-C isolated from Canada geese. This large G gene got truncated upon serial passages in Vero cell cultures by deletion of 1,015 nt near the end of the open reading frame. The recent domestic turkey isolates of aMPV-C lacked the large G gene but instead had a small G gene of 783 nt, irrespective of cell culture passage levels. In some cultures, both large and small genes were detected, indicating the existence of a mixed population of the virus. Apparently, serial passage of aMPV-C in cell cultures and natural passage in turkeys in the field led to truncation of the G gene, which may be a mechanism of virus evolution for survival in a new host or environment
Different Domains of the RNA Polymerase of Infectious Bursal Disease Virus Contribute to Virulence
BACKGROUND: Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. IBDV has a bi-segmented double-stranded RNA genome. Segments A and B encode the capsid, ribonucleoprotein and non-structural proteins, or the virus polymerase (RdRp), respectively. Since the late eighties, very virulent (vv) IBDV strains have emerged in Europe inducing up to 60% mortality. Although some progress has been made in understanding the molecular biology of IBDV, the molecular basis for the pathogenicity of vvIBDV is still not fully understood. METHODOLOGY, PRINCIPAL FINDINGS: Strain 88180 belongs to a lineage of pathogenic IBDV phylogenetically related to vvIBDV. By reverse genetics, we rescued a molecular clone (mc88180), as pathogenic as its parent strain. To study the molecular basis for 88180 pathogenicity, we constructed and characterized in vivo reassortant or mosaic recombinant viruses derived from the 88180 and the attenuated Cu-1 IBDV strains. The reassortant virus rescued from segments A of 88180 (A88) and B of Cu-1 (BCU1) was milder than mc88180 showing that segment B is involved in 88180 pathogenicity. Next, the exchange of different regions of BCU1 with their counterparts in B88 in association with A88 did not fully restore a virulence equivalent to mc88180. This demonstrated that several regions if not the whole B88 are essential for the in vivo pathogenicity of 88180. CONCLUSION, SIGNIFICANCE: The present results show that different domains of the RdRp, are essential for the in vivo pathogenicity of IBDV, independently of the replication efficiency of the mosaic viruses