1,577 research outputs found
Navier-Stokes equations on the flat cylinder with vorticity production on the boundary
We study the two-dimensional Navier-Stokes system on a flat cylinder with the
usual Dirichlet boundary conditions for the velocity field u. We formulate the
problem as an infinite system of ODE's for the natural Fourier components of
the vorticity, and the boundary conditions are taken into account by adding a
vorticity production at the boundary. We prove equivalence to the original
Navier-Stokes system and show that the decay of the Fourier modes is
exponential for any positive time in the periodic direction, but it is only
power-like in the other direction.Comment: 25 page
On approximate solutions of semilinear evolution equations II. Generalizations, and applications to Navier-Stokes equations
In our previous paper [12] (Rev. Math. Phys. 16, 383-420 (2004)), a general
framework was outlined to treat the approximate solutions of semilinear
evolution equations; more precisely, a scheme was presented to infer from an
approximate solution the existence (local or global in time) of an exact
solution, and to estimate their distance. In the first half of the present work
the abstract framework of \cite{uno} is extended, so as to be applicable to
evolutionary PDEs whose nonlinearities contain derivatives in the space
variables. In the second half of the paper this extended framework is applied
to theincompressible Navier-Stokes equations, on a torus T^d of any dimension.
In this way a number of results are obtained in the setting of the Sobolev
spaces H^n(T^d), choosing the approximate solutions in a number of different
ways. With the simplest choices we recover local existence of the exact
solution for arbitrary data and external forces, as well as global existence
for small data and forces. With the supplementary assumption of exponential
decay in time for the forces, the same decay law is derived for the exact
solution with small (zero mean) data and forces. The interval of existence for
arbitrary data, the upper bounds on data and forces for global existence, and
all estimates on the exponential decay of the exact solution are derived in a
fully quantitative way (i.e., giving the values of all the necessary constants;
this makes a difference with most of the previous literature). Nextly, the
Galerkin approximate solutions are considered and precise, still quantitative
estimates are derived for their H^n distance from the exact solution; these are
global in time for small data and forces (with exponential time decay of the
above distance, if the forces decay similarly).Comment: LaTeX, 84 pages. The final version published in Reviews in
Mathematical Physic
Vanishing viscosity limit of navier-stokes equations in gevrey class
In this paper we consider the inviscid limit for the periodic solutions to
Navier-Stokes equation in the framework of Gevrey class. It is shown that the
lifespan for the solutions to Navier-Stokes equation is independent of
viscosity, and that the solutions of the Navier-Stokes equation converge to
that of Euler equation in Gevrey class as the viscosity tends to zero. Moreover
the convergence rate in Gevrey class is presented
Incompressible flow in porous media with fractional diffusion
In this paper we study the heat transfer with a general fractional diffusion
term of an incompressible fluid in a porous medium governed by Darcy's law. We
show formation of singularities with infinite energy and for finite energy we
obtain existence and uniqueness results of strong solutions for the
sub-critical and critical cases. We prove global existence of weak solutions
for different cases. Moreover, we obtain the decay of the solution in ,
for any , and the asymptotic behavior is shown. Finally, we prove the
existence of an attractor in a weak sense and, for the sub-critical dissipative
case with , we obtain the existence of the global attractor
for the solutions in the space for any
Synchronization of extended systems from internal coherence
A condition for the synchronizability of a pair of PDE systems, coupled
through a finite set of variables, is commonly the existence of internal
synchronization or internal coherence in each system separately. The condition
was previously illustrated in a forced-dissipative system, and is here extended
to Hamiltonian systems, using an example from particle physics. Full
synchronization is precluded by Liouville's theorem. A form of synchronization
weaker than "measure synchronization" is manifest as the positional coincidence
of coherent oscillations ("breathers" or "oscillons") in a pair of coupled
scalar field models in an expanding universe with a nonlinear potential, and
does not occur with a variant of the model that does not exhibit oscillons.Comment: version accepted for publication in PRE (paragraph beginning at the
bottom of pg. 5 has been rewritten to suggest unifying principle for
synchronizability, applying to both forced-dissipative and Hamiltonian
systems; other minor changes
Breakdown of Conformal Invariance at Strongly Random Critical Points
We consider the breakdown of conformal and scale invariance in random systems
with strongly random critical points. Extending previous results on
one-dimensional systems, we provide an example of a three-dimensional system
which has a strongly random critical point. The average correlation functions
of this system demonstrate a breakdown of conformal invariance, while the
typical correlation functions demonstrate a breakdown of scale invariance. The
breakdown of conformal invariance is due to the vanishing of the correlation
functions at the infinite disorder fixed point, causing the critical
correlation functions to be controlled by a dangerously irrelevant operator
describing the approach to the fixed point. We relate the computation of
average correlation functions to a problem of persistence in the RG flow.Comment: 9 page
Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics
We undertake a systematic exploration of recurrent patterns in a
1-dimensional Kuramoto-Sivashinsky system. For a small, but already rather
turbulent system, the long-time dynamics takes place on a low-dimensional
invariant manifold. A set of equilibria offers a coarse geometrical partition
of this manifold. A variational method enables us to determine numerically a
large number of unstable spatiotemporally periodic solutions. The attracting
set appears surprisingly thin - its backbone are several Smale horseshoe
repellers, well approximated by intrinsic local 1-dimensional return maps, each
with an approximate symbolic dynamics. The dynamics appears decomposable into
chaotic dynamics within such local repellers, interspersed by rapid jumps
between them.Comment: 11 pages, 11 figure
Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain
In this paper we deal with the local null controllability of the
N-dimensional Navier-Stokes system with internal controls having one vanishing
component. The novelty of this work is that no condition is imposed on the
control domain
On a non-isothermal model for nematic liquid crystals
A model describing the evolution of a liquid crystal substance in the nematic
phase is investigated in terms of three basic state variables: the {\it
absolute temperature} \teta, the {\it velocity field} \ub, and the {\it
director field} \bd, representing preferred orientation of molecules in a
neighborhood of any point of a reference domain. The time evolution of the
velocity field is governed by the incompressible Navier-Stokes system, with a
non-isotropic stress tensor depending on the gradients of the velocity and of
the director field \bd, where the transport (viscosity) coefficients vary
with temperature. The dynamics of \bd is described by means of a parabolic
equation of Ginzburg-Landau type, with a suitable penalization term to relax
the constraint |\bd | = 1. The system is supplemented by a heat equation,
where the heat flux is given by a variant of Fourier's law, depending also on
the director field \bd. The proposed model is shown compatible with
\emph{First and Second laws} of thermodynamics, and the existence of
global-in-time weak solutions for the resulting PDE system is established,
without any essential restriction on the size of the data
Near-linear dynamics in KdV with periodic boundary conditions
Near linear evolution in Korteweg de Vries (KdV) equation with periodic
boundary conditions is established under the assumption of high frequency
initial data. This result is obtained by the method of normal form reduction
- …
