5,843 research outputs found

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Full text link
    The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Full text link
    The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density

    Electronic structure and carrier transfer in B-DNA monomer polymers and dimer polymers: Stationary and time-dependent aspects of wire model vs. extended ladder model

    Full text link
    We employ two Tight-Binding (TB) approaches to study the electronic structure and hole or electron transfer in B-DNA monomer polymers and dimer polymers made up of NN monomers (base pairs): (I) at the base-pair level, using the on-site energies of base pairs and the hopping integrals between successive base pairs, i.e., a wire model and (II) at the single-base level, using the on-site energies of the bases and the hopping integrals between neighboring bases, i.e., an \textit{extended} ladder model since we also include diagonal hoppings. We solve a system of MDMD ("matrix dimension") coupled equations [(I) MDMD = NN, (II) MDMD = 2N2N] for the time-independent problem, and a system of MDMD coupled 1st1^\text{st} order differential equations for the time-dependent problem. We study the HOMO and the LUMO eigenspectra, the occupation probabilities, the Density of States (DOS) and the HOMO-LUMO gap as well as the mean over time probabilities to find the carrier at each site [(I) base pair or (II) base)], the Fourier spectra, which reflect the frequency content of charge transfer (CT) and the pure mean transfer rates from a certain site to another. The two TB approaches give coherent, complementary aspects of electronic properties and charge transfer in B-DNA monomer polymers and dimer polymers.Comment: 20 pages, 23 figure

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Full text link
    The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density

    Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence

    Full text link
    Stability properties and mode signature for equilibria of a model of electron temperature gradient (ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving the infinite families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the equilibrium "translated" pressure gradient, stable equilibria can either be energy stable, i.e.\ possess definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of negative energy modes (NEMs). The ETG instability is then shown to arise through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two modified drift waves admitted by the system. The Hamiltonian of the linearized system is then explicitly transformed into normal form, which unambiguously defines mode signature. In particular, the fast mode turns out to always be a positive energy mode (PEM), whereas the energy of the slow mode can have either positive or negative sign

    On the rate of convergence of the Hamiltonian particle-mesh method

    Get PDF
    The Hamiltonian Particle-Mesh (HPM) method is a particle-in-cell method for compressible fluid flow with Hamiltonian structure. We present a numer- ical short-time study of the rate of convergence of HPM in terms of its three main governing parameters. We find that the rate of convergence is much better than the best available theoretical estimates. Our results indicate that HPM performs best when the number of particles is on the order of the number of grid cells, the HPM global smoothing kernel has fast decay in Fourier space, and the HPM local interpolation kernel is a cubic spline

    Variational water-wave model with accurate dispersion and vertical vorticity

    Get PDF
    A new water-wave model has been derived which is based on variational techniques and combines a depth-averaged vertical (component of) vorticity with depth-dependent potential flow. The model facilitates the further restriction of the vertical profile of the velocity potential to n-th order polynomials or a finite-element profile with a small number of elements (say), leading to a framework for efficient modeling of the interaction of steepening and breaking waves near the shore with a large-scale horizontal flow. The equations are derived from a constrained variational formulation which leads to conservation laws for energy, mass, momentum and vertical vorticity. It is shown that the potential-flow water-wave equations and the shallow-water equations are recovered in the relevant limits. Approximate shock relations are provided, which can be used in numerical schemes to model breaking waves

    Network Physiology reveals relations between network topology and physiological function

    Full text link
    The human organism is an integrated network where complex physiologic systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here, we develop a framework to probe interactions among diverse systems, and we identify a physiologic network. We find that each physiologic state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiologic states the network undergoes topological transitions associated with fast reorganization of physiologic interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.Comment: 12 pages, 9 figure

    Complete mitochondrial sequences from Mesolithic Sardinia

    Get PDF
    Little is known about the genetic prehistory of Sardinia because of the scarcity of pre-Neolithic human remains. From a genetic perspective, modern Sardinians are known as genetic outliers in Europe, showing unusually high levels of internal diversity and a close relationship to early European Neolithic farmers. However, how far this peculiar genetic structure extends and how it originated was to date impossible to test. Here we present the first and oldest complete mitochondrial sequences from Sardinia, dated back to 10,000 yBP. These two individuals, while confirming a Mesolithic occupation of the island, belong to rare mtDNA lineages, which have never been found before in Mesolithic samples and that are currently present at low frequencies not only in Sardinia, but in the whole Europe. Preliminary Approximate Bayesian Computations, restricted by biased reference samples for Mesolithic Sardinia (the two typed samples) and Neolithic Europe (limited to central and north European sequences), suggest that the first inhabitants of the island have had a small or negligible contribution to the present-day Sardinian population, which mainly derives its genetic diversity from continental migration into the island by Neolithic times

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Get PDF
    International audienceThe effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density
    corecore