5,843 research outputs found
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Electronic structure and carrier transfer in B-DNA monomer polymers and dimer polymers: Stationary and time-dependent aspects of wire model vs. extended ladder model
We employ two Tight-Binding (TB) approaches to study the electronic structure
and hole or electron transfer in B-DNA monomer polymers and dimer polymers made
up of monomers (base pairs): (I) at the base-pair level, using the on-site
energies of base pairs and the hopping integrals between successive base pairs,
i.e., a wire model and (II) at the single-base level, using the on-site
energies of the bases and the hopping integrals between neighboring bases,
i.e., an \textit{extended} ladder model since we also include diagonal
hoppings. We solve a system of ("matrix dimension") coupled equations [(I)
= , (II) = ] for the time-independent problem, and a system of
coupled order differential equations for the time-dependent
problem. We study the HOMO and the LUMO eigenspectra, the occupation
probabilities, the Density of States (DOS) and the HOMO-LUMO gap as well as the
mean over time probabilities to find the carrier at each site [(I) base pair or
(II) base)], the Fourier spectra, which reflect the frequency content of charge
transfer (CT) and the pure mean transfer rates from a certain site to another.
The two TB approaches give coherent, complementary aspects of electronic
properties and charge transfer in B-DNA monomer polymers and dimer polymers.Comment: 20 pages, 23 figure
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Stability properties and mode signature for equilibria of a model of electron
temperature gradient (ETG) driven turbulence are investigated by Hamiltonian
techniques. After deriving the infinite families of Casimir invariants,
associated with the noncanonical Poisson bracket of the model, a sufficient
condition for stability is obtained by means of the Energy-Casimir method. Mode
signature is then investigated for linear motions about homogeneous equilibria.
Depending on the sign of the equilibrium "translated" pressure gradient, stable
equilibria can either be energy stable, i.e.\ possess definite linearized
perturbation energy (Hamiltonian), or spectrally stable with the existence of
negative energy modes (NEMs). The ETG instability is then shown to arise
through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a
negative energy mode, corresponding to two modified drift waves admitted by the
system. The Hamiltonian of the linearized system is then explicitly transformed
into normal form, which unambiguously defines mode signature. In particular,
the fast mode turns out to always be a positive energy mode (PEM), whereas the
energy of the slow mode can have either positive or negative sign
On the rate of convergence of the Hamiltonian particle-mesh method
The Hamiltonian Particle-Mesh (HPM) method is a particle-in-cell method for compressible fluid flow with Hamiltonian structure. We present a numer- ical short-time study of the rate of convergence of HPM in terms of its three main governing parameters. We find that the rate of convergence is much better than the best available theoretical estimates. Our results indicate that HPM performs best when the number of particles is on the order of the number of grid cells, the HPM global smoothing kernel has fast decay in Fourier space, and the HPM local interpolation kernel is a cubic spline
Variational water-wave model with accurate dispersion and vertical vorticity
A new water-wave model has been derived which is based on variational techniques and combines a depth-averaged vertical (component of) vorticity with depth-dependent potential flow. The model facilitates the further restriction of the vertical profile of the velocity potential to n-th order polynomials or a finite-element profile with a small number of elements (say), leading to a framework for efficient modeling of the interaction of steepening and breaking waves near the shore with a large-scale horizontal flow. The equations are derived from a constrained variational formulation which leads to conservation laws for energy, mass, momentum and vertical vorticity. It is shown that the potential-flow water-wave equations and the shallow-water equations are recovered in the relevant limits. Approximate shock relations are provided, which can be used in numerical schemes to model breaking waves
Network Physiology reveals relations between network topology and physiological function
The human organism is an integrated network where complex physiologic
systems, each with its own regulatory mechanisms, continuously interact, and
where failure of one system can trigger a breakdown of the entire network.
Identifying and quantifying dynamical networks of diverse systems with
different types of interactions is a challenge. Here, we develop a framework to
probe interactions among diverse systems, and we identify a physiologic
network. We find that each physiologic state is characterized by a specific
network structure, demonstrating a robust interplay between network topology
and function. Across physiologic states the network undergoes topological
transitions associated with fast reorganization of physiologic interactions on
time scales of a few minutes, indicating high network flexibility in response
to perturbations. The proposed system-wide integrative approach may facilitate
the development of a new field, Network Physiology.Comment: 12 pages, 9 figure
Complete mitochondrial sequences from Mesolithic Sardinia
Little is known about the genetic prehistory of Sardinia because of the scarcity of pre-Neolithic human remains. From a genetic perspective, modern Sardinians are known as genetic outliers in Europe, showing unusually high levels of internal diversity and a close relationship to early European Neolithic farmers. However, how far this peculiar genetic structure extends and how it originated was to date impossible to test. Here we present the first and oldest complete mitochondrial sequences from Sardinia, dated back to 10,000 yBP. These two individuals, while confirming a Mesolithic occupation of the island, belong to rare mtDNA lineages, which have never been found before in Mesolithic samples and that are currently present at low frequencies not only in Sardinia, but in the whole Europe. Preliminary Approximate Bayesian Computations, restricted by biased reference samples for Mesolithic Sardinia (the two typed samples) and Neolithic Europe (limited to central and north European sequences), suggest that the first inhabitants of the island have had a small or negligible contribution to the present-day Sardinian population, which mainly derives its genetic diversity from continental migration into the island by Neolithic times
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
International audienceThe effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density
- …
