368 research outputs found

    Third Harmonic Cavity Modal Analysis

    Get PDF
    Third harmonic cavities have been designed and fabricated by FNAL to be used at the FLASH/XFEL facility at DESY to minimise the energy spread along the bunches. Modes in these cavities are analysed and the sensitivity to frequency errors are assessed. A circuit model is employed to model the monopole bands. The monopole circuit model is enhanced to include successive cell coupling, in addition to the usual nearest neighbour coupling. A mode matching code is used to facilitate rapid simulations, incorporating fabrication errors. Curves surfaces are approximated by a series of abrupt transitions and the validity of this approach is examinedComment: Proceedings of 14th International Conference on RF Superconductivity (SRF 2009), 2009, Berlin, German

    Toroidal prefactorization algebras associated to holomorphic fibrations and a relationship to vertex algebras

    Get PDF
    Let XX be a complex manifold, π:E→X\pi: E \rightarrow X a locally trivial holomorphic fibration with fiber FF, and g\mathfrak{g} a Lie algebra with an invariant symmetric form. We associate to this data a holomorphic prefactorization algebra Fg,π\mathcal{F}_{\mathfrak{g}, \pi} on XX in the formalism of Costello-Gwilliam. When X=CX=\mathbb{C}, g\mathfrak{g} is simple, and FF is a smooth affine variety, we extract from Fg,π\mathcal{F}_{\mathfrak{g}, \pi} a vertex algebra which is a vacuum module for the universal central extension of the Lie algebra g⊗H0(F,O)[z,z−1]\mathfrak{g} \otimes H^{0}(F, \mathcal{O})[z,z^{-1}]. As a special case, when FF is an algebraic torus (C∗)n(\mathbb{C}^{*})^n, we obtain a vertex algebra naturally associated to an (n+1)(n+1)--toroidal algebra, generalizing the affine vacuum module

    When does cyclic dominance lead to stable spiral waves?

    Get PDF
    Species diversity in ecosystems is often accompanied by characteristic spatio-temporal patterns. Here, we consider a generic two-dimensional population model and study the spiraling patterns arising from the combined effects of cyclic dominance of three species, mutation, pair-exchange and individual hopping. The dynamics is characterized by nonlinear mobility and a Hopf bifurcation around which the system's four-phase state diagram is inferred from a complex Ginzburg-Landau equation derived using a perturbative multiscale expansion. While the dynamics is generally characterized by spiraling patterns, we show that spiral waves are stable in only one of the four phases. Furthermore, we characterize a phase where nonlinearity leads to the annihilation of spirals and to the spatially uniform dominance of each species in turn. Away from the Hopf bifurcation, when the coexistence fixed point is unstable, the spiraling patterns are also affected by the nonlinear diffusion

    Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics

    Get PDF
    Therapeutic manipulation of the gasotransmitter hydrogen sulfide (H(2)S) has recently been proposed as a novel targeted anticancer approach. Here we show that human lung adenocarcinoma tissue expresses high levels of hydrogen sulfide (H(2)S) producing enzymes, namely, cystathionine beta-synthase (CBS), cystathionine gamma lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), in comparison to adjacent lung tissue. In cultured lung adenocarcinoma but not in normal lung epithelial cells elevated H(2)S stimulates mitochondrial DNA repair through sulfhydration of EXOG, which, in turn, promotes mitochondrial DNA repair complex assembly, thereby enhancing mitochondrial DNA repair capacity. In addition, inhibition of H(2)S-producing enzymes suppresses critical bioenergetics parameters in lung adenocarcinoma cells. Together, inhibition of H(2)S-producing enzymes sensitize lung adenocarcinoma cells to chemotherapeutic agents via induction of mitochondrial dysfunction as shown in in vitro and in vivo models, suggesting a novel mechanism to overcome tumor chemoresistance

    Feynman graphs, rooted trees, and Ringel-Hall algebras

    Full text link
    We construct symmetric monoidal categories \LRF, \FD of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of \LRF, \FD, \HH_{\LRF}, \HH_{\FD} are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman graphs. We thus obtain an interpretation of the Connes-Kreimer Lie algebras on rooted trees and Feynman graphs as Ringel-Hall Lie algebras

    Hox-controlled reorganisation of intrasegmental patterning cues underlies Drosophila posterior spiracle organogenesis

    Get PDF
    10 påginas, 8 figuras. Material complementario del artículo esta disponible en http://dev.biologists.org/cgi/content/full/132/13/3093/DC1Hox proteins provide axial positional information and control segment morphology in development and evolution. Yet how they specify morphological traits that confer segment identity and how axial positional information interferes with intrasegmental patterning cues during organogenesis remain poorly understood. We have investigated the control of Drosophila posterior spiracle morphogenesis, a segment-specific structure that forms under Abdominal-B (AbdB) Hox control in the eighth abdominal segment (A8). We show that the Hedgehog (Hh), Wingless (Wg) and Epidermal Growth Factor Receptor (Egfr) pathways provide specific inputs for posterior spiracle morphogenesis and act in a genetic network made of multiple and rapidly evolving Hox/signalling interplays. A major function of AbdB during posterior spiracle organogenesis is to reset A8 intrasegmental patterning cues, first by reshaping wg and rhomboid expression patterns, then by reallocating the Hh signal and later by initiating de novo expression of the posterior compartment gene engrailed in anterior compartment cells. These changes in expression patterns confer axial specificity to otherwise reiteratively used segmental patterning cues, linking intrasegmental polarity and acquisition of segment identity.This work was supported by the `Centre National de la Recherche Scientifique' (CNRS), grants from `la Ligue Nationale Contre Le Cancer (équipe labellisée La Ligue)', `l'Association pour la Recherche contre le Cancer' (ARC), The Royal Society, The Welcome Trust, the `Minesterio de education y ciencia (BFU 2004 0 96) and ARC and EMBO long term fellowships to S. Merabet.Peer reviewe

    Characterization of spiraling patterns in spatial rock-paper-scissors games

    Get PDF
    The spatiotemporal arrangement of interacting populations often influences the maintenance of species diversity and is a subject of intense research. Here, we study the spatiotemporal patterns arising from the cyclic competition between three species in two dimensions. Inspired by recent experiments, we consider a generic metapopulation model comprising “rock-paper-scissors” interactions via dominance removal and replacement, reproduction, mutations, pair exchange, and hopping of individuals. By combining analytical and numerical methods, we obtain the model's phase diagram near its Hopf bifurcation and quantitatively characterize the properties of the spiraling patterns arising in each phase. The phases characterizing the cyclic competition away from the Hopf bifurcation (at low mutation rate) are also investigated. Our analytical approach relies on the careful analysis of the properties of the complex Ginzburg-Landau equation derived through a controlled (perturbative) multiscale expansion around the model's Hopf bifurcation. Our results allow us to clarify when spatial “rock-paper-scissors” competition leads to stable spiral waves and under which circumstances they are influenced by nonlinear mobility

    Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques

    Get PDF
    Application of modern and innovative spectroscopic and microscopic approaches to biomedical analysis opens new horizons and sheds new light on many unexplored scientific territories. In this review, we critically summarize up-to-date Raman-based methodologies for red blood cells (RBCs) analysis used in biology and medicine, and compare them with both classical, as well as other spectroscopic and microscopic approaches. The main emphasis is placed on the advantages, disadvantages and capabilities of each technique for detection of RBC deteriorations and RBC-related diseases. Although currently used classical techniques of medical analysts serve as a gold standard for clinicians in diagnosis of erythropathies, they provide insufficient insight into RBC alterations at the molecular level. In addition, there is a demand for non-destructive and label-free analytical techniques for rapid detection and diagnosis of erythropathies. Their recognition often requires multimodal methodology comprising application of methods including sophisticated spectroscopy-based techniques, where Raman-based approaches play an important role

    Effects of noise on convergent game learning dynamics

    Full text link
    We study stochastic effects on the lagging anchor dynamics, a reinforcement learning algorithm used to learn successful strategies in iterated games, which is known to converge to Nash points in the absence of noise. The dynamics is stochastic when players only have limited information about their opponents' strategic propensities. The effects of this noise are studied analytically in the case where it is small but finite, and we show that the statistics and correlation properties of fluctuations can be computed to a high accuracy. We find that the system can exhibit quasicycles, driven by intrinsic noise. If players are asymmetric and use different parameters for their learning, a net payoff advantage can be achieved due to these stochastic oscillations around the deterministic equilibrium.Comment: 17 pages, 8 figure
    • 

    corecore