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Characterization of spiraling patterns in spatial rock-paper-scissors games
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The spatiotemporal arrangement of interacting populations often influences the maintenance of species diversity

and is a subject of intense research. Here, we study the spatiotemporal patterns arising from the cyclic competition

between three species in two dimensions. Inspired by recent experiments, we consider a generic metapopulation

model comprising “rock-paper-scissors” interactions via dominance removal and replacement, reproduction,

mutations, pair exchange, and hopping of individuals. By combining analytical and numerical methods, we

obtain the model’s phase diagram near its Hopf bifurcation and quantitatively characterize the properties of the

spiraling patterns arising in each phase. The phases characterizing the cyclic competition away from the Hopf

bifurcation (at low mutation rate) are also investigated. Our analytical approach relies on the careful analysis of

the properties of the complex Ginzburg-Landau equation derived through a controlled (perturbative) multiscale

expansion around the model’s Hopf bifurcation. Our results allow us to clarify when spatial “rock-paper-scissors”

competition leads to stable spiral waves and under which circumstances they are influenced by nonlinear mobility.

DOI: 10.1103/PhysRevE.90.032704 PACS number(s): 87.23.Cc, 05.45.−a, 02.50.Ey, 87.23.Kg

I. INTRODUCTION

Ecosystems consist of a large number of interacting
organisms and species organized in rich and complex evolving
structures [1,2]. The understanding of what helps maintain
biodiversity is of paramount importance for the characteriza-
tion of ecological and biological systems. It is well established,
notably in biology and ecology, that the dynamics of structured
populations, where the interactions are limited to some neigh-
borhood, generally differs considerably from their spatial-
homogeneous counterparts. In this context, local interactions
and the spatial arrangement of individuals have been found to
be closely related to the stability and coexistence of species
and is therefore a subject of continuous research, see, e.g.,
Refs. [1–3]. Particular attention has been dedicated to cyclic
dominance, which was shown to be a motif facilitating the
coexistence of diverse species in a number of ecosystems
ranging from side-blotched lizards [4,5] and communities
of bacteria [6–8] to plants systems and coral reef inver-
tebrates [9,10]. It is noteworthy that cyclic dominance is
not restricted only to biological systems but also has been
found in models of behavioral science [11], e.g., in some
public goods games [12]. Remarkably, experiments on three
strains of Escherichia coli bacteria in cyclic competition on
two-dimensional plates yield spatial arrangements that were
shown to sustain the long-term coexistence of the species [6].
Cyclic competitions of this type have been modeled with rock-
paper-scissors (RPS) games, where “rock crushes scissors,
scissors cut paper, and paper wraps rock” [13].

While nonspatial RPS-like games usually drive all species
but one to extinction in finite time [14], their spatial counter-
parts are generally characterized by intriguing complex spa-
tiotemporal patterns sustaining the species coexistence, see,
e.g., Refs. [15–21]. In recent years, many models for the RPS
cyclic competition have been considered. In particular, various
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two-dimensional versions of the model introduced by May and
Leonard [22] have been studied [15,17–19,21,23]. In spatial
variants of the May-Leonard model, it was found that mobility
implemented by pair-exchange among neighbors can signif-
icantly influence species diversity: Below a certain mobility
threshold species coexist over long periods of time and self-
organize by forming fascinating spiraling patterns, whereas
biodiversity is lost when that threshold is exceeded [15]. Other
popular RPS models are those characterized by a conservation
law at mean-field level (“zero-sum” games). In two spatial
dimensions, these zero-sum models are also characterized by
a long-lasting coexistence of the species, but in this case
the population does not form spiraling patterns [16]. Yet
oscillatory behavior has been found in some spatial settings for
variants of these zero-sum models [24,25]. On the other hand,
while microbial communities in cyclic competition were found
to self-organize in a complex manner, it is not clear whether
there is a parameter regime in which their spatial arrangement
would form spirals as those observed in myxobacteria and in
Dictyostelium mounds [26]. In this context, we believe that this
work contributes to understanding the relationship between the
coexistence of species and the formation of spiraling patterns
in populations in cyclic competitions.

To shed further light on the evolution and self-organization
of population in cyclic competition, in this work, we com-
prehensively characterize the spatiotemporal properties of a
generic two-dimensional model for the cyclic competition
between three species that unifies the various processes
considered in Refs. [15,17,18,21,23]. The model that we
consider accounts for cyclic competition with dominance-

removal [15,18,21,23] and dominance-replacement [16], also
including reproduction, mutation, and mobility in the form
of hopping and pair exchange between nearest neighbors.
Our approach is inspired by the experiments of Ref. [8] and
the model is formulated at the metapopulation level [27,28],
which allows us to establish a close relationship between
the underlying stochastic and deterministic dynamics. Within
such a framework, we combine analytical and numerical
methods to carefully analyze the properties of the emerging
spatiotemporal patterns. Our main analytical tool consists of

1539-3755/2014/90(3)/032704(14) 032704-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.032704


SZCZESNY, MOBILIA, AND RUCKLIDGE PHYSICAL REVIEW E 90, 032704 (2014)

deriving a complex Ginzburg-Landau equation (CGLE) [29]
using a multiscale perturbative expansion in the vicinity
of the model’s Hopf bifurcation. The CGLE allows us to
accurately analyze the spatiotemporal dynamics in the vicinity
of the bifurcation and to faithfully describe the quantitative
properties of the spiraling patterns arising in the four phases
reported in Refs. [19,20]. Our theoretical predictions are
fully confirmed by extensive computer simulations at different
levels of description. We also study the system’s phase diagram
far from the Hopf bifurcation, where it is characterized by
three phases, and show that the properties of the spiraling
patterns can still be inferred from the CGLE. For this, we study
phenomena like far-field breakup and convective instability of
spiral waves, and discuss how these are influenced by nonlinear
mobility and by enhanced cyclic dominance.

Our paper is structured as follows: In Sec. II, the generic
metapopulation model [27] is introduced and its mean-field
analysis is presented. We also present the spatial deterministic
description of the model with nonlinear diffusion and the per-
turbative derivation of the CGLE. Section II is complemented
by two technical appendices. The model’s phase diagram near
the Hopf bifurcation is studied in detail in Sec. III where the
CGLE is employed to characterize the properties of spiraling
patterns in each phase. Section IV is dedicated to the analysis
of the phase diagram, and to the properties of the spiraling
patterns, far from the Hopf bifurcation and addresses how these
are influenced by nonlinear mobility and by enhancing the rate
of cyclic dominance. Finally, we conclude with a discussion
and interpretation of our findings.

II. THE METAPOPULATION MODEL

Spatial rock-paper-scissors games have mostly been studied
on square lattices whose nodes can be either empty or at most
occupied by one individual with the dynamics implemented via
nearest-neighbor interactions [15–18,21]. Here, inspired by the
experiments of Ref. [8], as well as by the works [5,6], we adopt
an alternative modeling approach in terms of a metapopulation
model that allows further analytical progress.

In the metapopulation formulation [19,20], the lattice
consists of a periodic square array of L × L patches (or
islands) each of which comprises a well-mixed subpopulation
of constant size N (playing the role of the carrying capacity)
consisting of individuals of three species, S1, S2, S3 and
empty spaces (Ø). It has to be noted that slightly different
metapopulation models of similar systems have been recently
considered, see, e.g., Refs. [23,25,30,31]. As sketched in
Fig. 1, each patch of the array is labeled by a vector ℓ = (ℓ1,ℓ2),
with ℓ1,2 ∈ {1,2, . . . ,L} and periodic boundary conditions,
and can accommodate at most N individuals, i.e., all patches
have a carrying capacity N . Each patch ℓ consists of a
well-mixed (spatially unstructured) population comprising
Ni(ℓ) individuals of species Si (i = 1,2,3) and NØ(ℓ) =
N − NS1

(ℓ) − NS2
(ℓ) − NS3

(ℓ) empty spaces. Species S1, S2,
and S3 are in cyclic competition within each patch (intrapatch

interaction), while all individuals can move to neighboring
sites (interpatch mobility), see below.

The population dynamics is implemented by considering
the most generic form of cyclic rock-papers-scissors-like
competition between the three species with the population

FIG. 1. (Color online) Cartoon of the metapopulation model:

L × L patches (or islands) are arranged on a periodic square lattice

(of linear size L). Each patch ℓ = (ℓ1,ℓ2) can accommodate at most

N individuals of species S1,S2, S3 and empty spaces denoted Ø.

Each patch consists of a well-mixed population of NS1
[red (gray)]

individuals of species S1, NS2
[green (light gray)] of type S2, NS3

[blue (dark gray)] of type S3 and NØ = N − NS1
− NS2

− NS3
(black)

empty spaces. The composition of a patch evolves in time according

to the processes (1) and (2). Furthermore, migration from the focal

patch (dark gray) to its four nearest neighbors (light gray) occurs

according to the processes (4), see text.

composition within each patch evolving according to the
following schematic reactions:

Si + Si+1
σ−→ Si + Ø Si + Si+1

ζ−→ 2Si, (1)

Si + Ø
β−→ 2Si Si

μ−→ Si±1, (2)

where the species index i ∈ {1,2,3} is ordered cyclically such
that S3+1 ≡ S1 and S1−1 ≡ S3. The reactions (1) describe
the generic form of cyclic competition where Si dominates
over Si+1 and is dominated by Si−1. They account for
the dominance-removal selection processes (with rate σ ) of
Refs. [15,21], as well as the dominance-replacement processes
(with rate ζ ) studied notably in Ref. [16]. The process of
dominance-removal accounts for cyclic dominance where
species Si displaces Si+1 that is replaced by an empty space,
while in the dominance-replacement process Si+1 is replaced
by an Si . This implies that dominance-replacement is a
zero-sum process conserving the total population size, whereas
dominance-removal creates empty spaces. The processes (2)
allow for the reproduction of each species (with rate β)
independently of the cyclic interaction provided that free
space (Ø) is available within the patch. Mutations of the type
Si −→ Si±1 (with rate μ) capture the fact that E. coli bacteria
are known to mutate [6], while the side-blotched lizards
Uta stansburiana have been found to undergo throat-color

032704-2



CHARACTERIZATION OF SPIRALING PATTERNS IN . . . PHYSICAL REVIEW E 90, 032704 (2014)

transformations [5]. From a modeling viewpoint, the mutation
yields a bifurcation around which considerable mathematical
progress is feasible, see Sec. III and Ref. [19].

A. Mean-field analysis

When N → ∞, demographic fluctuations are negligible
and the population composition within each single patch is
described by the continuous variables si = Ni/N which obey
the mean-field rate equations (REs) derived in Appendix A

dsi

dt
= si[β(1 − r) − σsi−1 + ζ (si+1 − si−1)]

+μ(si−1 + si+1 − 2si), (3)

where s ≡ (s1,s2,s3) and r ≡ s1 + s2 + s3 is the total density
and, since the carrying capacity is fixed, we have used
NØ/N = 1 − r . The REs (3) admit a coexistence fixed point
s∗ = s∗(1,1,1) with s∗ = β/(3β + σ ) that, in the presence
of a nonvanishing mutation rate, is an asymptotically stable
focus when μ > μH = βσ

6(3β+σ )
and is unstable otherwise. In

fact, the REs (3) are characterized by a supercritical Hopf
bifurcation (HB) yielding a stable limit cycle of frequency

close to ωH =
√

3β(σ+2ζ )
2(3β+σ )

when μ < μH [19]. In different

contexts than here, HBs have been also be found in some
zero-sum RPS systems [24,25]. In the absence of mutations
(μ = 0), the coexistence state s∗ is never asymptotically stable
and the REs (3) yield either heteroclinic cycles (when μ = 0
and σ > 0) [22] or neutrally stable periodic orbits (when
μ = σ = 0) [13]. In the absence of spatial structure, finite-size
fluctuations are responsible for the rapid extinction of two
species in each of these two cases [14]. It is worth noting
that the heteroclinic cycles are degenerate when σ > 0 and
ζ = μ = 0.

B. Dynamics with partial differential equations

Since we are interested in analyzing the spatiotemporal
arrangement of the populations, in addition to the intrapatch
reactions (1) and (2), we also allow individuals to migrate
between neighboring patches ℓ and ℓ′, according to

[Si]ℓ[Ø]ℓ′
δD−→ [Ø]ℓ[Si]ℓ′ ,

[Si]ℓ[Si±1]ℓ′
δE−→ [Si±1]ℓ[Si]ℓ′ , (4)

where pair exchange (with rate δE) is divorced from hopping
(with rate δD). In biology, organisms are in fact known
not to simply move diffusively but to sense and respond to
their environment, see, e.g., Ref. [32]. Here (4) allows us
to discriminate between the movement in crowded regions,
where mobility is dominated by pair exchange, and mobility
in diluted regions where hopping can be more efficient, and
leads to nonlinear mobility when δE 	= δD , see below and
Refs. [19,33].

The metapopulation formulation of the model defined
by (1), (2), and (4) is ideally suited for a size expansion in the
inverse of the carrying capacity N of the underlying master
equation [34]. As shown in Appendix A, in the continuum limit
and, to lowest order, the master equation yields the following
partial differential equations (PDEs) with periodic boundary

conditions:

∂tsi = si[β(1 − r) − σsi−1] + ζ si[si+1 − si−1]

+μ[si−1 + si+1 − 2si] + (δE − δD)[r	si − si	r]

+ δD	si, (5)

where here si ≡ si(x,t) and the contribution proportional to
δE − δD is a nonlinear diffusive term. These PDEs give the
continuum description of the system’s deterministic dynamics
on a domain of fixed size S × S defined on a square lattice
comprising L × L sites with periodic boundary conditions,
when L → ∞ and x = S(ℓ/L) such that x ∈ [0,S]2. In such
a setting, the mobility rates of (4) are rescaled according
to δD,E → δD,E(S

L
)2 and interpreted as diffusion coefficients

(see Appendix A). However, to mirror the properties of the
metapopulation lattice model, throughout this paper we use
S = L. We have found that the choice S = L is well suited
to describe spatiotemporal patterns whose size exceeds the
unit spacing, as is always the case in this work. Equations (5)
and (6) have been solved using the second-order exponential
time differencing method with a time step δt = 0.125 while
the number of fast Fourier transform modes ranged from
128 × 128 to 8192 × 8192 [35,36].

Even though the derivation of (5) assumes N ≫ 1 (see
Appendix A), as illustrated in Fig. 2 (see also Ref. [19,20]), it
has been found that (5) accurately capture the properties of the
lattice model, whose dynamics is characterized by the emer-
gence of fascinating spiraling patterns, when N � 20 and μ <

μH (no coherent patterns are observed when μ > μH ) [20].
When N = 4–16 the outcomes of stochastic simulations are
noisy but, quite remarkably, it also turns out that the solutions
of (5) still reproduce some of the outcomes of stochastic
simulations [19,20], see Sec. IV. In Fig. 2, as in all the other
figures, the results of stochastic and deterministic simulations
are visualized by color (gray-level) coding the abundances of
the three species in each patch with appropriate RGB intensi-
ties such that [red (gray), green (light gray), blue (dark gray)] =
(s1,s2,s3) resulting in empty spaces being color coded in black.

To next-to-leading order, the size expansion of the master
equation yields a Fokker-Planck equation that can be used for
instance to characterize the system’s spatiotemporal properties

FIG. 2. (Color online) Comparison of lattice simulations (per-

formed using a spatial Gillespie algorithm [37]) with solutions of (5)

in the bound state phase (BS), where the spiral waves are stable,

near the HB point, see text of Sec. III. Rightmost panels show the

solutions of (5) while the remaining panels show results of stochastic

simulations for L2 = 1282 with N = 4, 16, 64, 256, 1024 (from left

to right). As in all other figures, each color (level of gray) represents

one species with black dots indicating low density regions. Top panels

show initial conditions while the lower panels show the domains at

t = 1000. The other parameters are β = σ = δD = δE = 1, ζ = 0.6,

and μ = 0.02.
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in terms of its power spectra, see, e.g., Refs. [14,28]. Here,
we adopt a different route and will show that the emerging
spiraling patterns can be comprehensively characterized from
the properties of a suitable CGLE properly derived from (5).

C. Complex Ginzburg-Landau equation

The CGLE is well known for its rich phase diagram char-
acterized by the formation of complicated coherent structures,
like spiral waves in two dimensions, see, e.g., Ref. [29].

In the context of spatial RPS games, the properties of
the CGLE have been used first in Refs. [15] for a variant
of the model considered here with only dominance-removal
competition (ζ = μ = 0 and δD = δE). The treatment was
then extended to also include dominance-replacement com-
petition (with μ = 0 and δD = δE) [17,23] and has recently
been generalized to more than three species [38]. In all
these works, the derivation of the CGLE relies on the fact
that the underlying mean-field dynamics quickly settles on
a two-dimensional manifold on which the flows approach
the absorbing boundaries forming heteroclinic cycles [13,22].
These are then treated as stable limit cycles and the spatial
degrees of freedom are reinstated by introducing linear
diffusion (see also Ref. [39]). While this approach remarkably
succeeded in explaining various properties of the underlying
models upon adjusting (fitting) one parameter, it rests on a
number of uncontrolled steps. These include the approxi-
mation of heteroclinic cycles by stable limit cycles and the
omission of the nonlinear diffusive terms that arise from the
transformations leading to the CGLE [13].

Here, we consider an alternative derivation of the CGLE
that approximates (5) and describes the properties of the
generic metapopulation model defined by (1), (2), and (4).
Since the mean-field dynamics is characterized by a stable
limit cycle (when μ < μH ) resulting from a Hopf bifurcation
(HB) arising at μ = μH , our approach builds on a perturbative
multiscale expansion around μH (HB point). For this, we
proceed with a space and time perturbation expansion in
the parameter ǫ =

√
3(μH − μ) [19] in terms of the “slow

variables” (X,T ) = (ǫx,ǫ2t) [40,41]. While the details of the
derivation are provided in Appendix B, we here summarize
the main steps of the analysis. After the transformation
s → u = M(s − s∗), where u = (u1,u2,u3) and M is given
by (B1), u3 decouples from u1 and u2 (to linear order), and

one writes u(x,t) =
∑3

n=1 ǫnU (n)(t,T ,X), where the compo-
nents of U (n) are of order O(1). Substituting into (5), with

U
(1)
1 + iU

(1)
2 = A(T ,X)eiωH t , one finds that A is a modulated

complex amplitude satisfying a CGLE obtained by imposing
the removal of the secular term arising at order O(ǫ3), see
Appendix B and Ref. [19]. Upon rescaling A by a constant
(see Appendix B), this yields the two-dimensional CGLE with
a real diffusion coefficient δ = 3βδE+σδD

3β+σ
as follows:

∂TA = δ	XA + A − (1 + ic)|A|2A, (6)

where 	X = ∂2
X1

+ ∂2
X2

= ǫ−2(∂2
x1

+ ∂2
x2

) and

c =
12ζ (6β − σ )(σ + ζ ) + σ 2(24β − σ )

3
√

3σ (6β + σ )(σ + 2ζ )
. (7)

FIG. 3. (Color online) Four phases in the two-dimensional

CGLE (6) for c = (2.0,1.5,1.0,0.5) from left to right. Spiral waves of

the third panel (from the left) are stable while the others are unstable,

see Sec. III. Here, the colors represent the argument of A encoded in

hue: red (gray), green (light gray), and blue (dark gray), respectively,

correspond to arguments 0, π/3, and 2π/3.

At this point it is worth noting the following:
(i) The CGLE (6) is a controlled approximation of the

the PDEs (5) around the HB and its expression differs
from those obtained in a series of previous works, e.g.,
in Refs. [15,17,18,23,38]. In particular, the functional
dependence of the CGLE parameter (7) differs from that used
in Refs. [15,17,18,23,38] for the special cases μ = ζ = 0 and
μ = 0.

(ii) As shown in Sec. III, the phase diagram and the emerg-
ing spiraling patterns around the HB can be quantitatively
described in terms of the sole parameter c, given by (7), that
does not depend on μ (since here μ ≈ μH ).

(iii) It has to be stressed that in the derivation of (6) no
nonlinear diffusive terms appear at order O(ǫ3). In fact, the
perturbative multiscale expansion yields the CGLE (6) with
only a linear diffusion term δ	XA, where δ = δ(δD,δE) is an
effective diffusion coefficient that reduces to δE when β ≫ σ

and to δ → δD when β ≪ σ [19]. This implies that nonlinear
mobility plays no relevant role near the HB where mobility
merely affects the spatial scale but neither the system’s phase
diagram nor the stability of the ensuing patterns. Near the HB,
one can therefore set δE = δD = 1 yielding δ = 1 without loss
of generality.

In Secs. III and IV, we show how the properties of the
CGLE (6) can be used to obtain the system’s phase diagram
and to comprehensively characterize the oscillating patterns
emerging in four different phases around the HB and also
to gain significant insight into the system’s spatiotemporal
behavior away from the HB. For the sake of simplicity we
here restrict σ and ζ into [0,4]. Since the components of u =
M(s − s∗) are linear superposition of the species’ densities

and A(X,T ) = e−iωH t (U
(1)
1 + iU

(1)
2 ), the modulus |A| of the

solution of (6) is bounded by 0 and 1 when one works with
the slow (X,T ) variables. Hence, as illustrated by Fig. 3, the
argument of A carries useful information on the wavelength
and speed of the patterns, whereas its modulus allows us to
track the position of the spiral cores, identified as regions
where |A| ≈ 0 corresponding to close to zero deviations from
the steady state s∗ (see Fig. 11 below).

III. STATE DIAGRAM NEAR THE HOPF BIFURCATION

AND CHARACTERIZATION OF FOUR PHASES

The CGLE (6) enables us to obtain an accurate char-
acterization of the spatiotemporal patterns in the vicinity
of the HB by relying on the well-known phase diagram
of the two-dimensional CGLE [29]. The latter consists of
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FIG. 4. (Color online) Upper panels: Typical snapshots of the

phases AI, EI, BS, and SA (from left to right) as obtained from (5)

(top row) and from lattice simulations (middle row) with parameters

σ = β = δE = δD = 1, μ = 0.02, L = 128,N = 64 and, from left

to right, ζ = (1.8,1.2,0.6,0). The corresponding values of the CGLE

parameter (7) are c ≈ (1.94,1.47,1.01,0.63). Lower panel: Phase

diagram of the two-dimensional RPS system around the Hopf

bifurcation with contours of c = (cAI,cEI,cBS) in the σ -ζ plane, see

text. We distinguish four phases: spiral waves are unstable in AI, EI,

and SA phases, while they are stable in BS phase. The boundaries

between the phases have been obtained using (7), see Refs. [19,20]

for details.

four distinct phases which can be classified in terms of
the CGLE parameter c given by (7) [19,20]. As illustrated
in Fig. 4, these are separated by the three critical values
(cAI,cEI,cBS) ≈ (1.75,1.25,0.845). In the absolute instability

(AI) phase, arising when c > cAI, no stable spiral waves can
be sustained. In the Eckhaus instability (EI) phase, arising
when cEI < c < cAI, spiral waves are convectively unstable
and their arms are first distorted and then break up. Spiral
waves are stable in the bound state (BS) phase that arises
when cBS < c < cEI. Spiral waves collide and annihilate in
the spiral annihilation (SA) phase when 0 < c < cBS.

As illustrated by Figs. 2 and 3, and in the upper panels
of Fig. 4, we have verified for different sets of parameters
(β, σ , ζ ) and c that the deterministic predictions of (5) and
of the CGLE (6) correctly reflect the properties of the lattice
metapopulation system, with a striking correspondence as soon
as N � 64.

In this section, Eq. (6) is used to derive the system’s phase
diagram around the HB and to fully characterize each of
its four phases. As explained below, the effect of noise has
been found to significantly affect the dynamics only when the
mobility rate is particularly low and N is of order of the unity,
see Sec. IV B, but the spatiotemporal properties of the lattice
model are well captured by (5) when the size of the patterns

FIG. 5. (Color online) Leftmost: Domain of size 5122 cut out

from a numerical solution of (5) with β = σ = δD = δE = 1, ζ =
0.3, μ = 0.02, and L2 = 10242. The yellow frame outlines domain

of size 1282 enlarged in the middle panel. Middle: Part of a spiral

arm (far from the core) resembling a plane wave enlarged from the

left panel. The color (gray color) depth of the right half of the image

was reduced to 256 colors (levels of gray) for an easy identification

of the wavelength found to be equal to 71 length units in the physical

domain as measured by the yellow bar. Rightmost: Same as in the

middle panel from lattice simulations with N = 64.

moderately exceeds that of lattice spacing, see Fig. 2. In what
follows, our analysis is based mainly on (6) and we have
carried out extensive numerical simulations confirming that (5)
and the CGLE provide a faithful description of the lattice
metapopulation model’s dynamics when N � 16, while their
predictions have been found to also qualitatively reproduce
some aspects of the lattice simulation when N = 2–16, see
Refs. [19,20].

A. Bound-state phase (0.845 � c � 1.25)

When cBS < c < cEI, the system lies in the bound state
phase where the dynamics is characterized by the emergence of
stable spiral waves that have a well-defined wavelength λ and
phase velocity v. This is fully confirmed by our lattice simula-
tions and by the solutions of (5), as illustrated in Fig. 5 where
one observes well-formed spirals whose wavelengths are
independent of N and L. These quantities can be related analyt-
ically using the CGLE (6) by proposing a traveling plane-wave
ansatz A(X,T ) = Rei(k.X−ωT ), where R is the plane-wave
amplitude. Such a traveling wave ansatz is a suitable approxi-
mation away from the core of the spiraling patterns as verified
in our numerical simulations. Substitution into (6) gives
ω = cR2 and R2 = 1 − δk2 when the imaginary and real parts
are equated, respectively. This yields the dispersion relation

ω = cR2 = c(1 − δk2). (8)

This indicates that a plane wave is possible only when
the wave number k (modulus of the wave vector k) satisfies
δk2 < 1.

We have numerically found that k and the wavelength of
the spiraling patterns vary with the system parameters, as
reported in Fig. 6, where |A|2 is shown to decrease with
c in the range 0.845 � c � 1.25, with |A|2 ≈ R2 when the
traveling wave ansatz is valid. The wavelength and phase
velocity of the patterns can be obtained from the CGLE (6)

and the dispersion relation (8) by noting that k =
√

(1 − R2)/δ
and therefore λCGLE = 2π/k and vCGLE = ω/k, see Fig. 7. At
this point, it is important to realize that λCGLE and vCGLE are
expressed in terms of the slow (X,T ) variables. By reinstating
the physical units (x,t) = (X/ǫ,T /ǫ2) one finds the spirals’
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FIG. 6. Numerical values of |A|2 obtained from a histogram

with 1000 bins (squares) and averaging (circles) with interpolation

(dashed). When the traveling wave ansatz is valid (in BS and EI

phases, away from the spirals’ cores), |A|2 ≈ R2, see text. Solid line

is the theoretical Eckhaus criterion (11) obtained from the plane-wave

ansatz yielding cEI ≈ 1.28 marked by the dotted line. This has to be

compared with the value of cEI ≈ 1.25 reported in the phase diagram

of the two-dimensional CGLE [29]. Spiral waves are convectively

unstable in the region where c > cEI and are stable just below that

value in the BS phase, see Sec. III B.

physical wavelength

λ =
λCGLE

ǫ
=

2π

ǫ

√
δ

1 − R2
(9)

and velocity

v = ǫvCGLE = ǫcR2

√
δ

1 − R2
. (10)

Our numerical simulations have shown that both k and the
amplitude R of the plane wave are nontrivial functions of the
CGLE parameter c given by (7), see Fig. 6. The theoretical
predictions of the velocity and wavelength of the spiral waves
have thus been obtained by substituting into (10) and (9) the
square of the plane-wave amplitude R2 by its value computed
from the solutions of CGLE (with δ = 1) as a function of c,
see Fig. 6. To this end, the numerical solutions of (6) have
been integrated initially up to time t = 799 until the spirals
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FIG. 7. Wavelength (◦) and (rescaled) velocity (⋄) obtained from

the CGLE (6) with δ = 1 as functions of the parameter c = 0.6–1.5.

The critical values cBS and cEI separating the SA and BS phases and

the BS and EI phases are indicated by thin vertical dotted lines, see

text.

are well developed to avoid any transient effects. Then the
amplitude from the successive 200 data frames between t =
800 and t = 999 were averaged, yielding about 1.3 × 107 data
points for each value of c. The results (for λCGLE and vCGLE)
are summarized in Fig. 7, which shows that the wavelength
decreases monotonically when c is increased (and R decreases,
see Fig. 6), with wavelengths ranging from λCGLE ≈ 26 to
λCGLE ≈ 16 when c varies from 0.845 to 1.25. By combining
this result with c’s dependence on the parameters σ and ζ ,
this leads to the conclusion that near the HB the wavelength
of the spiral waves increases with σ and decreases with ζ ,
which was confirmed by our simulations (see, e.g., Fig. 4). It is
worth noting that in a number of earlier works with μ = 0, the
quantities λ and v were considered to not vary with the CGLE
parameter c, see, e.g., [15,17,23]. The prediction (9) can be
used to theoretically estimate the spiral wavelength, see, e.g.,
Fig. 9 (left). As an example, the parameters used in Fig. 5
correspond to c ≈ 0.8 and ǫ ≈ 0.255, and therefore (9) yields
λCGLE ≈ 27.1 and a physical wavelength λ ≈ 27.1/0.255 ≈
106.3. Yet, as the example in Fig. 5 is not particularly close to
the HB (ǫ ≈ 0.255), the wavelength found in the simulations
is shorter than the prediction of (9). In the next section, we will
see that a more accurate estimate accounting for the distance
from the HB leads to λ ≈ 71.4, which is in excellent agreement
with the numerical solutions of (5) as well as with the lattice
simulations of the metapopulation model, see Fig. 5 (right).

Figure 7 also shows that, near the HB, the spiral velocity
varies little within the bound state phase, with values decaying
from vCGLE ≈ 3.0 to vCGLE ≈ 2.7 when c varies from 0.845 to
1.25 and δ = 1.

B. Eckhaus instability phase (1.25 � c � 1.75)

As shown in Figs. 6 and 7 the amplitude of the traveling
wave solution (when it is valid) and the spirals’ wavelength
vary with c. As a consequence, the wavelength decreases
when c increases and above a critical value cEI the spiral
waves become unstable, see Fig. 8. Here, we demonstrate
the predictive power of our approach by deriving cEI from
our controlled CGLE (6) and by characterizing the convective
Eckhaus instability arising in the range cEI < c < cAI.

When cEI < c < cAI, small perturbations of the spiraling
patterns, which normally decay for c < cEI, grow and are

FIG. 8. Space and time development of a spiral wave solution of

the CGLE (6) with c = 1.5 and δ = 1 in the EI phase (argument of

A encoded in grayscale): At time t = 700 the spiral wave propagates

with a wavelength λCGLE ≈ 13.7 (left). Subsequently, the arms start

to deform (t = 800, middle) and then a far-field breakup, due to a

convective Eckhaus instability, occurs causing the spiral arms to break

into an intertwining of smaller spirals (t = 900, right), see text.
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FIG. 9. Wavelengths of well-developed spiral wave solutions of

the CGLE (6) with δ = 1 in the BS and EI phases (argument of

A encoded in grayscale). Here, the wavelengths are measured by

counting pixels. Left: c = 1.0 and spirals are stable (BS phase).

The measured wavelength is 20.2 and compares well with the

theoretical predictions λCGLE ≈ 20.3 obtained from (9) with |A|2 ≈
R2 measured as 0.904. Right: c = 1.5 and spirals waves are in the EI

phase, but their arms are still unperturbed. The Eckhaus instability

will cause a far-field breakup further away from the core (not shown

here, see text and Fig. 8). The measured wavelength of 13.8 is in

excellent agreement with λCGLE ≈ 13.7 from (9) with |A|2 ≈ R2

measured as 0.791.

convected away from the cores; this is the Eckhaus instability,
as illustrated in Fig. 8. These instabilities eventually cause the
far-field breakup of the spiraling patterns and the emergence
of an intertwining of smaller spirals, see Fig. 8 (rightmost).
Before the far-field breakup occurs the properties of spirals
far from the core are still well described by the plane-wave
solution of the CGLE (6) and the dispersion relation (8). In
particular, Fig. 9 illustrates that the spiral wavelength relatively
close to their cores (absence of far-field breakup), but still at a
sufficient distance from them for the traveling wave ansatz
to be valid, is in excellent agreement with the theoretical
prediction (9), see also Fig. 8 (leftmost).

The convective nature of the instability makes it challenging
to determine the critical value c = cEI marking the onset of the
Eckhaus instability, but its theoretical value can be predicted
by considering a perturbation of the plane-wave ansatz A =
(1 + ρ)Rei(k.X+ωT +ϕ) with |ρ|,|ϕ| ≪ 1 as a solution of our
CGLE (6). Substituting this expression into (6) and seeking
for a solution of the form ρ ∼ ϕ ∼ egT +iq.X [42], we find
that Re(g) > 0 and the perturbation grows exponentially when
δk2 > (3 + 2c2)−1 or, equivalently, when

R2 <
2(1 + c2)

3 + 2c2
. (11)

In Fig. 6, the criterion (11) is used to determine the onset of the
EI phase by plotting the measured |A|2 ≈ R2 dependence on c

in the range c = 0.1–1.5, yielding the estimate cEI ≈ 1.28 that
agrees well with the value cEI ≈ 1.25 reported in the phase
diagram of the two-dimensional CGLE [29]. The following
condition on the spiral wavelengths in the physical domain of
the PDEs (5) can be obtained from (9) and (11),

λ <
2π

ǫ

√
δ(3 + 2c2). (12)

This gives an upper bound λEI ≈ 5π
√

δ/ǫ for the spiral
wavelength in the EI phase near the HB. We note that the
wavelength in Fig. 8 is indeed below ǫλEI.

It is worth noting that for the model with μ = 0, δD = δE ,
and ζ = 1, the authors of Ref. [17] observed the occurrence
of an Eckhaus instability below a certain threshold σ derived
from an uncontrolled CGLE with N = 1. We also note that our

metapopulation model (N ≫ 1) predicts not only the existence
of Eckhaus instability but also an absolute instability phase at
low values of σ , which has not been reported in Ref. [17].

C. Spiral annihilation phase (0 < c � 0.845)

When c < cBS near the HB, the spatiotemporal dynamics
is characterized by the pair annihilation of colliding spirals.
The phenomenon of spiral annihilation drives the system
towards an homogeneous oscillating state filling the entire
space in a relatively short time for low values of c ≪ cBS. This
phenomenon is not affected by fluctuations and not caused
by any type of instabilities but is a genuine nonlinear effect
and is predicted by the phase diagram of the two-dimensional
CGLE [19,29]. For this reason it has not been observed
in studies of models, like those of Refs. [15,17,23], not
characterized by a Hopf bifurcation.

Theoretical results on the properties of the CGLE have
established that in the SA phase the stable equilibrium distance
between two spirals increases asymptotically as the value of
c is lowered to cBS which marks the end of the bound state
phase [29]. In other words, unless the two spirals are separated
by an infinite distance, they are destined to annihilate for any
values c < cBS. The mean time necessary for the annihilation
of two spirals separated by a certain distance increases
asymptotically as the value of c approaches cBS from below.
At c = cBS it takes an infinite time for the spirals to annihilate.

An insightful way to characterize the SA phase consist of
tracking the decay of the spiral core area in time. Spiral core
area here refers to the number of points on the discrete grid
forming the spiral core. To efficiently measure the spiral core
area, we have used the modulus of the solution of the CGLE (6).
We have confirmed that |A|2 is of order O(1) when there are
traveling waves (see Figs. 6 and 3), but |A|2 drops rapidly to 0
within the small area of the core with such an area remaining
approximately constant for a single core. The measure of the
total core area is therefore a suitable quantity to characterize
spiral annihilations. Practically, we have considered all points
for which |A|2 < 0.25, as being part of spiral cores (dark pixels
in Fig. 11) and the total spiral core area is the number of all such
points. We have also considered other limits such as |A|2 < 0.1
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FIG. 10. Staggered decay of the total core area in the solutions of

the CGLE (6) with c = 0.4 and δ = 1. The initial condition consists

of perturbations around |A|2 = 0. Here, after initial transients, 10

spirals remain with a total core area of approximately 120 pixels.

Subsequently, further five annihilations occur marked by the sharp

decreases in the total core area until the disappearance of all spirals.
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FIG. 11. (Color online) Spiral annihilation in the solutions of the

CGLE (6) with c = 0.1 and δ = 1. The square modulus |A|2 is

visualized here with dark pixels representing |A|2 ≈ 0 while light

pixels show regions where |A|2 ≈ 1. Snapshots are taken at times

t = (1800,2000,2200,2400,2600) from left to right.

and |A|2 < 0.5 finding similar behavior for all cutoffs which
are not too close to 1. The actual value of the cutoff affects
only the transients and not the long-term dynamics dominated
by the increasingly rare annihilation events.

The spiral annihilations manifest themselves as sharp drops
in the total core area equal to the area of the two colliding
cores, as illustrated in Fig. 10 where the initial transient is
characterized by a continuous decrease in the core area and
the periods between first collisions are notably shorter since
more spirals are present in the domain. Similarly, the time
separating two successive annihilations takes always longer
and the final annihilation takes longest (since spirals then need
to cross the domain to collide and need to spin in opposite
directions in order the annihilate). A visual representation of
spiral annihilation for c = 0.1 is shown in Fig. 11, where |A|2
is coded in grayscale. Four pairs of dark spots, signifying
the spiral cores with |A|2 ≈ 0, are shown colliding and
disappearing after approximately 3000 time steps, which is
an order of magnitude less than in Fig. 10 for c = 0.4. It has
to be noted that the time to annihilation grows as c approaches
cBS from below, as we confirmed in our simulations. While
the spiral annihilation time tends to infinity when c → cBS,
here the closest value to cBS that we considered was c = 0.4
for which spiral annihilation typically occurs after a time
exceeding 105 time steps.

D. Absolute instability phase (c � 1.75)

When the value of the CGLE parameter exceeds c > cAI ≈
1.75 the instability occurring in the EI phase is no longer
moving away from the core with the speed of the spreading
perturbations exceeding the speed at which the spirals can
convect them away. As illustrated in Fig. 12, when c > cAI,

FIG. 12. (Color online) Spatial arrangements in the EI (left)

and AI (center, right) phases as obtained from lattice simulations

near the Hopf bifurcation. Parameters are σ = β = δE = δD = 1,

μ = 0.02, L = 128, N = 64, with ζ = 1.2 in the EI phase (left)

and ζ = (1.8,2.4) in the AI phase (center, right). While the spatial

arrangement is still characterized by (deformed) spiraling patterns in

the EI phase, no spiraling arms can develop in the AI phase resulting

in an incoherent spatial structure.

the perturbations grow locally, destroying any coherent forms
of spiraling patterns causing their absolute instability.

From the phase diagram Fig. 4 we infer that the AI phase is
the most extended phase (at least near the HB) and spiral waves
are generally unstable when ζ ≫ σ , i.e., the rate of dominance-
replacement greatly exceeds that of dominance-removal. This
result can be compared with the absence of stable spiral waves
reported in variants of the two-dimensional zero-sum model,
see, e.g., Ref. [18] (where N = 1 and σ = μ = 0).

IV. SPATIOTEMPORAL PATTERNS AND PHASES

AWAY FROM THE HOPF BIFURCATION

(LOW MUTATION RATE)

While the spatiotemporal properties of the metapopulation
model are accurately captured the CGLE (6) in the vicinity of
the Hopf bifurcation (where ǫ is small), this is in principle no
longer the case at low mutation rate μ, when the dynamics oc-
curs away from the Hopf bifurcation point. Yet, in this section
we show how a qualitative, and even quantitative, description
of the dynamics can be obtained from the CGLE (6) also when
the mutation rate is low or vanishing, a case that has received
significant attention in recent years [15,17,18,21,23,30].

A. Phases and wavelengths at low mutation rate

As reported in Fig. 13, it appears that three of the four
phases predicted by the CGLE (6) around the HB are still
present far from the HB. Here, we first explore each of these
phases. As illustrated in Figs. 13 and 12, when the rate ζ is
decreased from a finite value to zero at fixed low mutation
rate μ (with σ , β, δD , and δE also kept fixed), the system
is first in the absolute instability (AI), then in the Eckhaus
instability (EI) phase, and eventually in the bound state (BS)
phase. When ζ ≫ σ and cyclic competition occurs mainly via
dominance-replacement, AI in which spiral waves are unstable
is the predominant phase, as observed in Refs. [18–21]. The
EI and BS phases are also present near the HB and their
common boundary is still qualitatively located as in the phase
diagram of Fig. 4. We have noted that, similarly to what
happens near the HB, the onset of convective Eckhaus-like
instability is accompanied by a decrease in the wavelength
with respect to the BS phase and this appears to hold even
beyond the regime of validity of the CGLE approximation.
The major effect on the phase diagram of lowering μ at fixed

FIG. 13. (Color online) Four phases away from the HB (low

mutation rate). Results of lattice simulations at low mutation rate

μ = 0.001 ≪ μH ≈ 0.042 (far away from the Hopf bifurcation) and

with all the other parameters kept at same values as in Fig. 4. One

recognizes the AI, EI, and BS phases (from left to right) while the

spiral annihilation in the SA phase (rightmost panel) are no longer

observed on the same length scales and time scales as in Fig. 4, see

text.
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FIG. 14. Dependence of λCGLE = ǫλ on the vanishing mutation

rate μ for various values of ζ : Near the Hopf bifurcation μ � μH ≈
0.042, the wavelengths (�) are obtained from the CGLE according

to (9). For lower values of μ, the wavelengths (◦) are measured

in the solutions of (5), see text. When μ → 0, λ approaches a

value λ̃(σ,δD,δE), see text. Parameters are as follows: σ = β = δE =
δD = 1.

σ , when ζ is sufficiently low, is the replacement of the spiral
annihilation phase by what appears to be an extended BS
phase (see Fig. 13, rightmost): Away from the HB and for
low values of μ and ζ , as in Ref. [15], instead of colliding and
annihilating spiral waves turn out to be stable for the entire
simulation time [43]. However, it has also to be noted that when
the dominance rate σ considerably exceeds the other rates,
an Eckhaus-like far-field breakup of the spiral waves occurs,
see Sec. IV B.

The AI, EI, and BS phases at low mutation rates are
characterized by the same qualitative properties as those
studied in Sec. III (compare the upper panels of Fig. 4 with
Fig. 13). As a significant difference, however, it has to be
noted that the wavelength of the spiraling patterns in the
BS and EI phases are shorter at low mutation rates than
near the HB. To explore this finding we have studied how
the wavelength depends on μ. We have thus investigated
how (9) can be generalized at low values of μ. To this end, the
wavelengths of the spiral waves solutions of (5) were measured
for μ ranging from 0.015 to 0.035 and for various values of
ζ (σ and β = 1 are kept fixed). As shown in Fig. 14, the
measured wavelength were compared with those obtained
with (9) when μ = μH and were found to be aligned, with a
slope that decreases when ζ is increased. Quite remarkably, the
values of λ collapse towards a single wavelength λ → λ̃ when
μ = 0, where λ̃ = λ̃(σ,δD,δE) is a function of the nonmutation
rates σ,δD,δE (when β is fixed). These results, summarized in
Fig. 14, indicate that λ depends linearly on μ. Near μ � μH

the expression (9) obtained from the CGLE (6) is a good
approximation for the actual λ, whereas (9) has to be rescaled
by a linear factor, depending on σ , ζ , and δD,E , to obtain the
wavelength when μ ≈ 0.

The general effect of lowering μ is therefore to reduce λ

and hence to allow to fit more spirals in the finite system. As an
example, the results reported in Fig. 14 can be used together
with (9) to accurately predict that the actual wavelength at

FIG. 15. (Color online) Effects of nonlinear mobility on spiraling

patterns at zero mutation rate for various values of δD at δE fixed. Lat-

tice simulations for the metapopulation model with N = 256,L2 =
5122, ζ = μ = 0, σ = β = 1, δE = 0.5, and δD = (0.5,1,1.5,2) from

left to right. Spiral waves are stable and form geometric patterns when

δD = δE (leftmost, linear diffusion), and Eckhaus-like instability

occurs when δD > δE and cause their far-field breakup, resulting

in a disordered intertwining of small spiraling patterns of short

wavelengths, see text.

μ = 0.02 is λ ≈ 71.4, which agrees excellently with what is
found numerically (see Fig. 5).

B. How does mobility and the rate of dominance influence

the size of the spiraling patterns?

Since we have introduced mobility by divorcing pair
exchange from hopping, yielding nonlinear diffusion in (5),
we are interested in understanding how mobility influences
the size of the spiraling patterns.

In Sec. III, we have seen that only linear mobility, via an
effective linear diffusion term in (6), matters near the HB. The
latter does not influence the stability of the spiraling patterns
but sets the spatial scale: changing the effective diffusion
coefficient δ → αδ (α > 0) rescales the space according to
x → x/

√
α, as confirmed by numerical results. A more

intriguing situation arises far from the HB, where the use of
the CGLE is no longer fully legitimate: Nonlinear mobility is
thus found to be able to alter the stability of the spiral waves
(in addition to influence the spatial scale). As illustrated by
Fig. 15, when the intensity of nonlinear mobility is increased
(by raising δD at fixed δE) in the BS phase, the spiral waves
that were stable under linear diffusion (see Fig. 15, leftmost)
disintegrate in an intertwining of spiral waves of limited
size and short wavelength. It thus appears that nonlinear
mobility promotes the far-field breakup of spiral waves and
enhances their convective instability via an Eckhaus-like
mechanism resulting in a disordered intertwining of small
spiraling patterns, see Fig. 15 (rightmost). Furthermore, since
the dominance-removal reaction is the only process that creates
empty spaces that can be exploited by individuals for hopping
onto neighboring patches, we expect that nonlinear mobility
would be stronger at high value of σ and for sufficiently high
hopping rate δD [45].

As already noticed in Ref. [44] for a version of the model
(with ζ = μ = 0, δD = δE , and N = 1) considered here, it
turns out that a similar mechanism destabilizes the spiral waves
when the dominance-removal rate σ is raised, with all the other
parameters maintained fixed, as illustrated in Fig. 16. It indeed
appears that spiral waves become far-field unstable after their
wavelength have been reduced by raising σ . For high values
of σ , any geometrically ordered pattern is disintegrated into
a disordered myriad of small intertwining spirals of reduced
wavelength. It is noteworthy that the reduction of λ as a result
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FIG. 16. (Color online) Raising σ away from HB cause in-

stability: Lattice simulations for the metapopulation model with

N = 64,L2 = 5122, ζ = μ = 0, β = 1, δD = δE = 0.5, and σ =
(1,2,3,4) from left to right. While the spiral waves are stable and form

a geometrically ordered when σ = 1 (leftmost panel), Eckhaus-like

instability occurs when σ is raised and cause their far-field breakup

(middle panels). When σ = 4, the ordered spiraling patterns is

entirely disintegrated and replaced by a disordered intertwining of

spirals of small size and short wavelengths (rightmost panel), see

text.

of raising σ may seem counterintuitive since the opposite
happens near the HB (see Figs. 4 and 9), in accordance
with the CGLE’s predictions. As a possible explanation, we
conjecture that the wavelength λ̃ approached when μ vanishes
is a decreasing function of σ .

So far, we have seen that the description in terms of (5)
and their approximation by the CGLE (6) provide a faithful
description of the spatiotemporal properties of the metapopu-
lation model, which appear to be driven by nonlinearity rather
than by noise when the carrying capacity is sufficient to allow a
meaningful size expansion. However, when nonlinear mobility
and/or the dominance-removal rates are high, the deterministic
description in terms of (5) yield spiraling patterns of short
wavelengths and limited size. In this case, the characteristic
scale of the resulting patterns is too small to lead to coherent
structures and, while the deterministic description (at high
resolution) may predict a disordered intertwining of small
spirals, demographic noise resulting from a low carrying
capacity N typically leads to noisy patches of activity on the
lattice rather than to spiraling patterns [45].

V. DISCUSSION AND CONCLUSION

In this work, we have investigated the spatiotemporal
patterns arising from the cyclic competition between three
species in two dimensions. For this, we have considered
a generic model that unifies the evolutionary processes
considered in earlier works (e.g., in Refs. [15,17,18,21,23]).
Here, the rock-paper-scissors cyclic interactions between the
species are implemented through dominance-removal and
dominance-replacement processes. In addition to the cyclic
competition, individuals can reproduce, mutate, and move,
either by swapping their position with a neighbor or by hopping
onto a neighboring empty space, which yields nonlinear
mobility. Inspired by recent experiments on microbial
communities [6,8], we have formulated a metapopulation
model consisting of an array of patches of finite carrying
capacity, each of which contains a well-mixed subpopulation.
While movement occurs between individuals of neighboring
patches, all the other processes take place within each patch.
The metapopulation formulation permits a neat description
of the system’s dynamics and provides an ideal setting to
study the influence of nonlinearity and stochasticity.

In particular, significant analytical progress is feasible in the
vicinity of the Hopf bifurcation (HB) caused by the mutation
process.

By investigating the deterministic and stochastic descrip-
tions of the system analytically and numerically, the main
achievement of this work is to provide the detailed phase
diagram of a generic class of spatial rock-paper-scissors
games along with the comprehensive description of the
spiraling patterns characterizing the various phases. Our main
analytical approach relies on the model’s CGLE derived from
a multiscale perturbative expansion in the vicinity of the
system’s HB. As a major difference with respect to what was
done in the vast majority of earlier works on this subject, our
CGLE provides us with a fully controlled approximation of
the dynamics around the bifurcation point. We have been able
to exploit the well-known properties of the CGLE to obtain
the accurate phase diagram near the HB in terms of a single
parameter. The diagram is characterized by four phases, called
“absolute instability” (AI), “Echkaus instability” (EI), “spiral
annihilation” (SA), and “bound state” (BS). Spiral waves are
found to be stable and convectively unstable in the BS and
EI phases, respectively, where their wavelength and velocity
have been obtained from the dispersion relation of the CGLE
and found to be in good agreement with results of both the
deterministic and lattice simulations of the system. We have
also been able to derive the threshold separating the BS and
EI phases. The SA phase, whose existence is found to be
limited to the vicinity of the HB, is characterized by the spiral
waves’ annihilation time (inferred from the CGLE). Finally,
we have found that there is always a regime (AI phase),
typically arising when dominance-replacement outcompetes
dominance-removal, where any coherent form of spiraling
patterns is prevented by growing local instabilities. We have
also been able to take advantage of the CGLE to analyze
the model’s spatiotemporal properties at low mutation rates,
i.e., far from the HB. In particular, we have found that at
low mutation rate the AI, EI, and BS phases are still present,
whereas the SA phase is replaced by what appears to be an
extended BS phase. We have found that the wavelength of the
spiral waves in the BS and EI phases decays linearly with the
mutation rate. While we have focused on the two-dimensional
system for its biological relevance, it worth noting that our
analytical approach based on the CGLE is general and can
also cover the cases of one and three spatial dimensions: One
would then obtain different phase diagrams wherein which
one would notably find traveling waves (in one dimension)
and scroll waves (in three dimensions) instead of instead of
spiraling patterns.

In general, we have seen that phenomena like far-field
breakup and convective instabilities that characterize the EI
phase, and limit the size of the spirals as well as their coherent
arrangement, can also be caused by nonlinear mobility and by
high dominance-removal rate. Under high nonlinear mobility
or for high dominance-removal rate, the system may exhibit
spiraling patterns of short wavelength and limited size even in
the extended BS phase. In this case, if the carrying capacity
is low, the intensity of demographic noise may prevent the
visualization of spiraling patterns on the discrete lattice [45].

As we have been able to carefully analysis the circum-
stances under which spiraling patterns characterizing the
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coexistence of cyclically competing species in a generic two-
dimensional rock-paper-scissors system are stable and persist,
we expect that our findings can contribute to shed further
light on the spatiotemporal arrangements of population in
cyclic competition. For instance, our findings provide various
theoretical scenarios for the lack of observation of spiraling
patterns in microbial experiments as those of Ref. [6], that
it would be interesting to test experimentally. One possible
explanation could be that the experimental parameters would
correspond to a regime where spiral waves are unstable.
Another plausible explanation could be that the time scale
on which the experiments of Ref. [6] have been carried out
(several days) is much shorter than the time necessary for the
formation of spiraling patterns in the simulations of the model.
This would imply that spiraling patterns would take very long
(perhaps several months) to form on a Petri dish, which might
explain why they have remained elusive. We also believe
that our theoretical results can potentially serve to guide
further experimental investigations on microbial communities,
like those of Ref. [6], by predicting parameter regimes
where species coexistence could form spiraling patterns as
in myxobacteria and in dictyostelium mounds [26].
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APPENDIX A: STOCHASTIC DYNAMICS

AND VAN KAMPEN SIZE EXPANSION

In this appendix, we explain how the stochastic dynamics
of the generic metapopulation models (1)–(4) can be captured
by the system’s master equation. We also outline how the latter
can be expanded to yield a more amenable description of the
dynamics [34].

1. Master equation

We here derive the master equation (ME) governing the
stochastic dynamics of the generic metapopulation model.
Combining the reaction rates with appropriate combinatorial
factors, the transition probabilities for each intrapatch reac-
tions (1) and (2) can be written as

T
β

i (ℓ) = β
NSi

(ℓ)NØ(ℓ)

N2
, (A1)

T σ
i (ℓ) = σ

NSi
(ℓ)NSi+1

(ℓ)

N2
, (A2)

T
ζ

i (ℓ) = ζ
NSi

(ℓ)NSi+1
(ℓ)

N2
, (A3)

T
μ

i (ℓ) = μ
NSi

(ℓ)

N
. (A4)

The combinatorial factors, such as NSi
(ℓ)NSi+1

(ℓ)/N2, express
the probability of species Si and Si+1 to interact within a
patch at site ℓ. The same applies to NSi

(ℓ)NØ(ℓ)/N2 for
the probability of species Si encountering an empty space
denoted by Ø. Migration between two neighboring patches

occurs by pair exchange (with rate δE) and by hopping (with
rate δD) according to (4), which similarly yields the transition
probabilities

D
δD

i (ℓ,ℓ′) = δD

NSi
(ℓ)NØ(ℓ′)

N2
, (A5)

D
δE

i (ℓ,ℓ′) = δE

NSi
(ℓ)NSi±1

(ℓ′)

N2
. (A6)

At this point, it is useful to introduce the step-up and step-down
operators [34]. These act on a given state or transition by
changing the numbers of individuals by ±1, i.e., E

±
i NSi

(ℓ) =
NSi

(ℓ) ± 1 and therefore

E
±
i (ℓ)T

β

i (ℓ) = β

(
NSi

(ℓ) ± 1
)
NØ(ℓ)

N2
. (A7)

This allows the total transition operator for intrapatch reactions
to be written as

Ti(ℓ) = [E+
i+1(ℓ) − 1]T σ

i (ℓ) + [E−
i (ℓ)E+

i+1(ℓ) − 1]T
ζ

i (ℓ)

+ [E−
i (ℓ) − 1]T

β

i (ℓ)

+ [E−
i (ℓ)E+

i+1(ℓ) + E
−
i (ℓ)E+

i−1(ℓ) − 2]T
μ

i (ℓ). (A8)

The general form of the terms [E±
... − 1]T ...

... originates from
the gain and loss terms in probability to find the system in a
particular state. Correspondingly, the total migration operator
for diffusions between neighboring subpopulations reads

Di(ℓ,ℓ
′) = [E+

i (ℓ)E−
i (ℓ′) − 1]DδD

i (ℓ,ℓ′)

+ [E+
i (ℓ)E−

i±1(ℓ)E−
i (ℓ′)E+

i±1(ℓ′) − 1]DδE

i (ℓ,ℓ′).

(A9)

Finally, we can write the master equation for the probability
P (N,t) of a system occupying a certain state N at time t

by summing the operators over all species i ∈ {1,2,3} and
subpopulations ℓ ∈ {1, . . . ,L}2, which yields

dP (N,t)

dt
=

3∑

i=1

L×L∑

ℓ

[
Ti(ℓ) +

1

2

∑

±

∑

ℓ′∈ℓ

Di(ℓ,ℓ
′)

]
P (N,t).

(A10)

Here the term ℓ′ ∈ ℓ indicates summation over all neighbors
of patch ℓ and

∑
± denotes the sum over i ± 1 in (A9).

In addition, N = {NØ(ℓ),NSi
(ℓ)|i = 1,2,3,ℓ ∈ L × L} is de-

fined as a collection of all NSi
(ℓ)’s and empty spaces NØ(ℓ) in

all subpopulations specifying uniquely the state of the entire
system. Later, η is used to symbolize a similar collection for
fluctuations ηi(ℓ) defined below.

2. System size expansion

While the mathematical treatment of (A10) represents a
formidable problem, significant progress can be made by
performing an expansion in the inverse of the carrying capacity
N [34]. Such a system size expansion requires the introduc-
tion of new rescaled variables. The normalized abundances
(densities) of species are equal to si(ℓ) = Ni(ℓ)/N . Here,
for convenience the dependence on ℓ is dropped, and the
fluctuations ηi(ℓ) around the fixed point s∗ are defined to scale
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with
√

N such that

ηi(ℓ) =
√

N [s∗ − si(ℓ)], where s∗ =
β

β + 3σ
, (A11)

which after differentiating with respect to time becomes

dηi(ℓ)

dt
= −

√
N

dsi(ℓ)

dt
. (A12)

With this assumption, it is now possible to write the master
equation for a (redefined) probability density �(η,t) in terms
of the fluctuations ηi(ℓ). As usual, the time is rescaled as
t → t/N and the left-hand side of (A10) thus becomes

1

N

∂�(η,t)

∂t
−

3∑

i=1

{1,...,L}2∑

ℓ

1
√

N

dsi(ℓ)

dt

∂�(η,t)

∂ηi(ℓ)
. (A13)

The right-hand side of (A10) can be written in a similar way
by introducing si(ℓ) and ηi(ℓ) variables. The step-up and step-
down operators are also expanded in their differential form
which, up to the order O(N−1), reads

E
±
i (ℓ) = 1 ±

1
√

N

∂

∂ηi(ℓ)
+

1

2

1

N

∂2

∂η2
i (ℓ)

. (A14)

The results of successive application of the operators can be
obtained by multiplying their differential forms. For example,
the application of E

+
i (ℓ)E−

i (ℓ′) results in

E
+
i (ℓ)E−

j (ℓ′) = 1 +
1

√
N

[
∂

∂ηi(ℓ)
−

∂

∂ηj (ℓ′)

]

+
1

2

1

N

[
∂

∂ηi(ℓ)
−

∂

∂ηj (ℓ′)

]2

. (A15)

After some algebra, the terms at the same order of N can be
collected on both sides of the master equation (A10). At order
O(N−1/2), the leading terms describe the time evolution of
the species densities si(ℓ). Leaving out the migration terms for
now and collecting all intrapatch reaction terms, the ordinary
differential equations describing changes in one patch can be
written down. These mean-field equations are also referred to
as the rate equations. Since only the subpopulation in one patch
is considered at this point and space is currently irrelevant, the
spatial variable ℓ in si(ℓ) is temporarily dropped. With the
introduction of s = (s1,s2,s3) and r = s1 + s2 + s3, the ODEs
read

dsi

dt
= si[β(1 − r) − σsi−1 + ζ (si+1 − si−1)]

+ μ(si−1 + si+1 − 2si) = Fi(s), (A16)

which corresponds to the mean-field rate Eqs. (3).
When migration terms are accounted for, the size expansion

to order O(N−1/2) yields terms that describe the deterministic
spatial dynamics of the model. In the suitable continuum
limit, these lead to the following partial differential equations
(PDEs) for the continuous coordinate x = S(ℓ/L) describing
the system’s dynamics on a domain of size S:

∂si(x)

∂t
= Fi(s(x)) + δD

(
S

L

)2

	si(x) + (δD − δE)

(
S

L

)2

× [si(x)	r(x) − r(x)	si(x)], (A17)

where Fi(s(x)) in the first line coincides with the right-
hand side of (A16) where the spatial dependence of the
densities is reinstated according to si → si(x). At this point,
it is useful to comment on the derivation and interpretation
of (A17), which coincides with (5). To lowest order, the
size expansion of the master equation with migration yields
terms like δD[

∑
ℓ′∈ℓ si(ℓ

′) − 4si(ℓ)], where ℓ′ are the four
nearest neighbors to site ℓ. To obtain the deterministic
description of the model in the continuum limit on a domain
of fixed size S × S, we consider the number of lattice sites
L → ∞. In terms of the variable x = (x1,x2), the mobility
rates of (4) are thus rescaled according to δD,E → δD,E(S

L
)2

and interpreted as diffusion coefficients. Therefore, in the
continuum limit δD[

∑
ℓ′∈ℓ si(ℓ

′) − 4si(ℓ)] → δD(S
L

)2	si(x),

where the differential operator 	 = ∂2
x1

+ ∂2
x2

is the usual
two-dimensional Laplacian. For the sake of comparison with
lattice simulations, we set the domain size to be equal to the
lattice size, i.e., S = L so the diffusion coefficients coincide
with the mobility rates. It is important to note that apart from
the nonspatial ODE Fi(s(x)) (A16) and a linear diffusive term
δD	si(x) there are also additional nonlinear diffusive terms
appearing in the second line of (A17). These vanish only in
the case of δD = δE considered in the vast majority of other
studies, e.g., in Refs [15,17,18,23].

APPENDIX B: MULTISCALE EXPANSION AND COMPLEX

GINZBURG-LANDAU EQUATION

In this Appendix, we provide details of the multiscale
asymptotic expansion leading to the complex Ginzburg-
Landau equation (6) which provides a controlled (perturbative)
approximation of the model’s dynamics in the vicinity of the
Hopf bifurcation.

1. Linear transformations

Before performing the asymptotic expansion can be per-
formed, it is convenient to work with the shifted variables
u = (u1(x),u2(x),u3(x)) = M(s − s∗), where

M =
1

√
6

⎛
⎜⎝

−1 −1 −2

−
√

3
√

3 0
√

2
√

2
√

2

⎞
⎟⎠ . (B1)

With this transformation, the origin coincides with the fixed
point s∗. In these new variables, the linear part of the rate
equations (A16) are in the Jordan normal form as follows:

du(x)

dt
=

⎡
⎢⎣

ǫ −ωH 0

ωH ǫ 0

0 0 −β

⎤
⎥⎦ u(x), (B2)

where β is the reproduction rate, ωH =
√

3β(σ+2ζ )
2(3β+σ )

, ǫ =
√

3(μH − μ), and μH = βσ

6(3β+σ )
. One notices that u3(x)

decouples from the oscillations in the u1(x)-u2(x) at Hopf
frequency ωH . The dynamics of three species abundances is
therefore confined to two dimensions, which simplifies the
multiscale expansion.

032704-12



CHARACTERIZATION OF SPIRALING PATTERNS IN . . . PHYSICAL REVIEW E 90, 032704 (2014)

2. Asymptotic expansion

Once the linear transformation (B1) is performed
onto (A17), we are interested in small perturbations of
magnitude ǫ around the Hopf bifurcation by writing [41]

μ = μH − 1
3
ǫ2. (B3)

Unlike the strained coordinate method, the expansion assumes
a general undetermined functional dependence on the new
multiscale coordinates. As well established in the theory of
weakly nonlinear systems [40,46], the first step of the deriva-
tion is the multiscale expansion of time and space coordinates,
e.g., ∂t → ∂t + ǫ2∂T and ∂x → ǫ∂X in one spatial dimension.
The new coordinates T = ǫ2t and X = ǫx are called “slow”
coordinates. Therefore, the Laplace operator of (A17) becomes
	 → ǫ2	X and is defined as 	X = ∂2

X1
+ ∂2

X2
. Furthermore,

the variable u(x,t) is expanded in the perturbation parameter
ǫ. The expansion, up to the order O(ǫ3) where the CGLE is
expected to appear, reads

u(x,t) =
3∑

n=1

ǫnU (n)(t,T ,X). (B4)

As a result of these expansions, all scaling in ǫ is made explicit
with the variables T , X , and U (n) for all n, being of order O(1).

Using the chain rule with the multiscale variables two
times with t , T = ǫ2t and similarly for 	ui(x,t) with X =
ǫx results in a hierarchy of simple equations which can
be solved at different orders of ǫ with necessary removals
of the secular terms. These unbound terms arise naturally
when the perturbation theory is applied to weakly nonlinear
problems and their removal gives additional information about
the system dynamics. Moreover, the Jordan normal form
suggests that the first two components of U (n)(t,T ,X) should
be combined into a complex number,

Z (n)(t,T ,X) = U
(n)
1 (t,T ,X) + iU

(n)
2 (t,T ,X).

The hierarchy of simplified equations begins at the leading
order O(ǫ), where the first set of the equations reads

∂tZ
(1)(t,T ,X) = iωHZ (1)(t,T ,X),

∂tU
(1)
3 (t,T ,X) = −βU

(1)
3 (t,T ,X).

These equations suggest oscillating and decaying solutions
with the following ansatz proposed:

Z (1)(t,T ,X) = A(1)(T ,X)eiωH t

U
(1)
3 (t,T ,X) = 0,

where A(1)(T ,X) is the complex amplitude modulation at

the “slow” time and length scales. Here U
(1)
3 (t,T ,X) = 0 is

assumed as evident from the exponential decay with rate

β > 0. At order O(ǫ2) one obtains U
(2)
3 = σ

2
√

3β
|Z (1)|2, which

corresponds to the leading term for the invariant manifold
considered in Ref. [15]. Continuing this procedure to order
O(ǫ3), a secular term is encountered. Canceling such a term
yields the CGLE for A(1)(T ,X) [29], which can be written as

∂TA
(1) = δ	XA

(1) + A(1) − (cr + ici)|A(1)|2A(1), (B5)

where the constants in the coefficient of the “cubic” |A(1)|2A(1)

term are

cr =
σ

2

(
1 +

σ

6β

)
, (B6)

ci = ωH +
σ 2

36ωH

+
σωH

6β

(
1 −

σ

3β

)
. (B7)

It is convenient to define an effective diffusion constant δ in
terms of the divorced mobility rates δD and δE such that

δ =
3βδE + σδD

3β + σ
. (B8)

The form of the combined constant δ gives clues to the
contributions from the two diffusion rates weighted by the
reaction rates β and σ . This shows an intuitive relation
between migration and biological processes. For example,
when reproduction is high for β ≫ σ , exchange of habitat
dominates due to lack of empty space. On the other hand, when
β ≪ σ , diffusive migration dominates as aggressive predation
leaves the ecosystem mostly unoccupied. Nevertheless, δ can
be set to unity by rescaling X which changes the sizes of the
overall patterns in the domain without affecting their dynamics
(see main text).

Finally, Eq. (B5) is simplified by rescaling A(1) →
A(1)/

√
cr and introducing the sole parameter c = ci/cr to give

the final form of the CGLE (6) where, for notational simplicity,
A(1) is relabeled A. Thus, the remaining parameter c combines
the reaction rates from the generic metapopulation model in
the following way:

c =
ci

cr

=
12ζ (6β − σ )(σ + ζ ) + σ 2(24β − σ )

3
√

3σ (6β + σ )(σ + 2ζ )
,

which is the expression of (7).
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