2,235 research outputs found
Recommended from our members
The circulatory impact of dust from dust profile assimilation
We present results from a reanalysis of temperatures, dust columns and dust vertical profiles focussing on the assimilation, distribution and transport of dust in the martian atmosphere. The assimilation of dust vertical information in particular is a valuable technique which has been shown to be of vital importance to a successful assimilation of the martian atmosphere, with the vertical representation of the dust distribution having a critical effect on assimilation results generally.
Atmospheric dust is a key driver of the martian circulation. Dust-induced heating and cooling is a potential feedback mechanism for dust lifting, for example, and can modify the circulation to either enhance or suppress dust storm activity. Accurately representing its complex spatial and temporal distribution is therefore crucial for understanding Mars’ atmospheric dynamics and transport
Numerical comparison of pipe-column-separation models
Results comparing six column-separation numerical models for simulating localized vapor cavities and distributed vaporous cavitation in pipelines are presented. The discrete vapor-cavity model (DVCM) is shown to be quite sensitive to selected input parameters. For short pipeline systems, the maximum pressure rise following column separation can vary markedly for small changes in wave speed, friction factor, diameter, initial velocity, length of pipe, or pipe slope. Of the six numerical models, three perform consistently over a broad number of reaches. One of them, the discrete gas-cavity model, is recommended for general use as it is least sensitive to input parameters or to the selected discretization of the pipeline. Three models provide inconsistent estimates of the maximum pressure rise as the number of reaches is increased; however, these models do give consistent results provided the ratio of maximum cavity size to reach volume is kept below 10%.Angus R. Simpson and Anton Bergan
Local environmental quality positively predicts breastfeeding in the UK’s Millennium Cohort Study
Background and Objectives: Breastfeeding is an important form of parental investment with clear health benefits. Despite this, rates remain low in the UK; understanding variation can therefore help improve interventions. Life history theory suggests that environmental quality may pattern maternal investment, including breastfeeding. We analyse a nationally representative dataset to test two predictions: (i) higher local environmental quality predicts higher likelihood of breastfeeding initiation and longer duration; (ii) higher socioeconomic status (SES) provides a buffer against the adverse influences of low local environmental quality.Methodology: We ran factor analysis on a wide range of local-level environmental variables. Two summary measures of local environmental quality were generated by this analysis—one ‘objective’ (based on an independent assessor’s neighbourhood scores) and one ‘subjective’ (based on respondent’s scores). We used mixed-effects regression techniques to test our hypotheses.Results: Higher objective, but not subjective, local environmental quality predicts higher likelihood of starting and maintaining breastfeeding over and above individual SES and area-level measures of environmental quality. Higher individual SES is protective, with women from high-income households having relatively high breastfeeding initiation rates and those with high status jobs being more likely to maintain breastfeeding, even in poor environmental conditions.Conclusions and Implications: Environmental quality is often vaguely measured; here we present a thorough investigation of environmental quality at the local level, controlling for individual- and area-level measures. Our findings support a shift in focus away from individual factors and towards altering the landscape of women’s decision making contexts when considering behaviours relevant to public health
Discovering Valuable Items from Massive Data
Suppose there is a large collection of items, each with an associated cost
and an inherent utility that is revealed only once we commit to selecting it.
Given a budget on the cumulative cost of the selected items, how can we pick a
subset of maximal value? This task generalizes several important problems such
as multi-arm bandits, active search and the knapsack problem. We present an
algorithm, GP-Select, which utilizes prior knowledge about similarity be- tween
items, expressed as a kernel function. GP-Select uses Gaussian process
prediction to balance exploration (estimating the unknown value of items) and
exploitation (selecting items of high value). We extend GP-Select to be able to
discover sets that simultaneously have high utility and are diverse. Our
preference for diversity can be specified as an arbitrary monotone submodular
function that quantifies the diminishing returns obtained when selecting
similar items. Furthermore, we exploit the structure of the model updates to
achieve an order of magnitude (up to 40X) speedup in our experiments without
resorting to approximations. We provide strong guarantees on the performance of
GP-Select and apply it to three real-world case studies of industrial
relevance: (1) Refreshing a repository of prices in a Global Distribution
System for the travel industry, (2) Identifying diverse, binding-affine
peptides in a vaccine de- sign task and (3) Maximizing clicks in a web-scale
recommender system by recommending items to users
SOYMOD OARDC: a dynamic simulator of soybean growth, development, and seed yield. I. Theory, structure, and validation
Bright X-ray radiation from plasma bubbles in an evolving laser wakefield accelerator
We show that the properties of the electron beam and bright x-rays produced
by a laser wakefield accelerator can be predicted if the distance over which
the laser self-focuses and compresses prior to self-injection is taken into
account. A model based on oscillations of the beam inside a plasma bubble shows
that performance is optimised when the plasma length is matched to the laser
depletion length. With a 200~TW laser pulse this results in an x-ray beam with
median photon energy of \unit[20]{keV}, photons above
\unit[1]{keV} per shot and a peak brightness of \unit[3 \times
10^{22}]{photons~s^{-1}mrad^{-2}mm^{-2} (0.1\% BW)^{-1}}.Comment: 5 pages, 4 figure
Current Developments in Computer Assisted Cartography at the UK Hydrographic Department
Since the introduction of Computer Assisted Cartography (CAC) techniques into the chart production process at the UK Hydrographic Department in the early 1970s, automation has come to play an increasingly important role. Current policy is to make use of such techniques wherever they offer benefits in terms of cost-effectiveness or production efficiency. This policy has been pursued since combination of the separate CAC production and development units in 1981. The aim of this paper is to summarise the development of the digital production flowline since 1981, to outline the current objectives for further development of the flowline, and to review the progress that is being made towards achieving those objectives. The paper deals specifically with the use of CAC to support production of the conventional paper chart. Expertise gained in the use of CAC is now being applied to experimental work related to the ‘electronic chart’ concept, but those developments fall outside the scope of this paper
Using Visual Discharge Instructions: How Comics Can Improve Healthcare and Outcomes for Limited English Proficient Patients
The purpose of this thesis is to demonstrate how graphic medicine could be a useful tool for communicating medical discharge instructions to populations with Limited English Proficiency (LEP). It is divided into three parts. First, it provides an overview of the biggest struggles LEP patients encounter in healthcare, which often occur around discharge instructions and medication changes. Second, the paper explores what graphic medicine is and how it has been used in healthcare. The last part of this paper consists of original graphic medicine artwork that addresses key issues for LEP populations during discharge with the goal of offering a starting place for a new potentially useful intervention to address health disparities
- …
