97 research outputs found

    Microbial Degradation of 2,4-Dichlorophenoxyacetic Acid on the Greenland Ice Sheet

    Get PDF
    The Greenland ice sheet (GrIS) receives organic carbon (OC) of anthropogenic origin, including pesticides, from the atmosphere and/or local sources, and the fate of these compounds in the ice is currently unknown. The ability of supraglacial heterotrophic microbes to mineralize different types of OC is likely a significant factor determining the fate of anthropogenic OC on the ice sheet. Here we determine the potential of the microbial community from the surface of the GrIS to mineralize the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Surface ice cores were collected and incubated for up to 529 days in microcosms simulating in situ conditions. Mineralization of side chain- and ring-labeled [C-14]2,4-D was measured in the samples, and quantitative PCR targeting the tfdA genes in total DNA extracted from the ice after the experiment was performed. We show that the supraglacial microbial community on the GrIS contains microbes that are capable of degrading 2,4-D and that they are likely present in very low numbers. They can mineralize 2,4-D at a rate of up to 1 nmol per m(2) per day, equivalent to similar to 26 ng C m(-2) day(-1). Thus, the GrIS should not be considered a mere reservoir of all atmospheric contaminants, as it is likely that some deposited compounds will be removed from the system via biodegradation processes before their potential release due to the accelerated melting of the ice sheet

    Contamination of the Arctic reflected in microbial metagenomes from the Greenland ice sheet

    Get PDF
    Globally emitted contaminants accumulate in the Arctic and are stored in the frozen environments of the cryosphere. Climate change influences the release of these contaminants through elevated melt rates, resulting in increased contamination locally. Our understanding of how biological processes interact with contamination in the Arctic is limited. Through shotgun metagenomic data and binned genomes from metagenomes we show that microbial communities, sampled from multiple surface ice locations on the Greenland ice sheet, have the potential for resistance to and degradation of contaminants. The microbial potential to degrade anthropogenic contaminants, such as toxic and persistent polychlorinated biphenyls, was found to be spatially variable and not limited to regions close to human activities. Binned genomes showed close resemblance to microorganisms isolated from contaminated habitats. These results indicate that, from a microbiological perspective, the Greenland ice sheet cannot be seen as a pristine environmentpublishersversionPeer reviewe

    Silicon isotopes in Arctic and sub-Arctic glacial meltwaters:The role of subglacial weathering in the silicon cycle

    Get PDF
    Glacial environments play an important role in high-latitude marine nutrient cycling, potentially contributing significant fluxes of silicon (Si) to the polar oceans, either as dissolved silicon (DSi) or as dissolvable amorphous silica (ASi). Silicon is a key nutrient in promoting marine primary productivity, contributingto atmosphericCO2 removal.We present the current understanding of Si cycling in glacial systems,focusingontheSiisotope(δ30Si)composition of glacial meltwaters. We combine existing glacial δ30Si data with new measurements from 20 subArctic glaciers, showing that glacial meltwaters consistently export isotopically light DSi compared with non-glacial rivers (+0.16‰ versus +1.38‰). Glacial δ30SiASi composition ranges from −0.05‰ to −0.86‰ but exhibits low seasonal variability. Silicon fluxes and δ30Si composition from glacial systems are not commonly included in global Si budgets and isotopic mass balance calculations at present. We discuss outstanding questions, including the formation mechanism of ASi and the export of glacial nutrients from fjords. Finally, we provide a contextual framework for the recent advances in our understanding of subglacial Si cycling and highlight critical research avenues for assessing potential future changes in these environments

    Patterns in Microbial Assemblages Exported From the Meltwater of Arctic and Sub-Arctic Glaciers

    Get PDF
    Meltwater streams connect the glacial cryosphere with downstream ecosystems. Dissolved and particulate matter exported from glacial ecosystems originates from contrasting supraglacial and subglacial environments, and exported microbial cells have the potential to serve as ecological and hydrological indicators for glacial ecosystem processes. Here, we compare exported microbial assemblages from the meltwater of 24 glaciers from six (sub)Arctic regions - the southwestern Greenland Ice Sheet, Qeqertarsuaq (Disko Island) in west Greenland, Iceland, Svalbard, western Norway, and southeast Alaska - differing in their lithology, catchment size, and climatic characteristics, to investigate spatial and environmental factors structuring exported meltwater assemblages. We found that 16S rRNA gene sequences of all samples were dominated by the phyla Proteobacteria, Bacteroidetes, and Actinobacteria, with Verrucomicrobia also common in Greenland localities. Clustered OTUs were largely composed of aerobic and anaerobic heterotrophs capable of degrading a wide variety of carbon substrates. A small number of OTUs dominated all assemblages, with the most abundant being from the genera Polaromonas, Methylophilus, and Nitrotoga. However, 16-32% of a region's OTUs were unique to that region, and rare taxa revealed unique metabolic potentials and reflected differences between regions, such as the elevated relative abundances of sulfur oxidizers Sulfuricurvum sp. and Thiobacillus sp. at Svalbard sites. Meltwater alpha diversity showed a pronounced decrease with increasing latitude, and multivariate analyses of assemblages revealed significant regional clusters. Distance-based redundancy and correlation analyses further resolved associations between whole assemblages and individual OTUs with variables primarily corresponding with the sampled regions. Interestingly, some OTUs indicating specific metabolic processes were not strongly associated with corresponding meltwater characteristics (e.g., nitrification and inorganic nitrogen concentrations). Thus, while exported assemblage structure appears regionally specific, and probably reflects differences in dominant hydrological flowpaths, OTUs can also serve as indicators for more localized microbially mediated processes not captured by the traditional characterization of bulk meltwater hydrochemistry. These results collectively promote a better understanding of microbial distributions across the Arctic, as well as linkages between the terrestrial cryosphere habitats and downstream ecosystems

    Catchment characteristics and seasonality control the composition of microbial assemblages exported from three outlet glaciers of the Greenland Ice Sheet

    Get PDF
    Glacial meltwater drains into proglacial rivers where it interacts with the surrounding landscape, collecting microbial cells as it travels downstream. Characterizing the composition of the resulting microbial assemblages in transport can inform us about intra-annual changes in meltwater flowpaths beneath the glacier as well as hydrological connectivity with proglacial areas. Here, we investigated how the structure of suspended microbial assemblages evolves over the course of a melt season for three proglacial catchments of the Greenland Ice Sheet (GrIS), reasoning that differences in glacier size and the proportion of glacierized versus non-glacierized catchment areas will influence both the identity and relative abundance of microbial taxa in transport. Streamwater samples were taken at the same time each day over a period of 3 weeks (summer 2018) to identify temporal patterns in microbial assemblages for three outlet glaciers of the GrIS, which differed in glacier size (smallest to largest; Russell, Leverett, and Isunnguata Sermia [IS]) and their glacierized: proglacial catchment area ratio (Leverett, 76; Isunnguata Sermia, 25; Russell, 2). DNA was extracted from samples, and 16S rRNA gene amplicons sequenced to characterize the structure of assemblages. We found that microbial diversity was significantly greater in Isunnguata Sermia and Russell Glacier rivers compared to Leverett Glacier, the latter of which having the smallest relative proglacial catchment area. Furthermore, the microbial diversity of the former two catchments continued to increase over monitored period, presumably due to increasing hydrologic connectivity with proglacial habitats. Meanwhile, diversity decreased over the monitored period in Leverett, which may have resulted from the evolution of an efficient subglacial drainage system. Linear discriminant analysis further revealed that bacteria characteristic to soils were disproportionately represented in the Isunnguata Sermia river, while putative methylotrophs were disproportionately abundant in Russell Glacier. Meanwhile, taxa typical for glacierized habitats (i.e., Rhodoferax and Polaromonas) dominated in the Leverett Glacier river. Our findings suggest that the proportion of deglaciated catchment area is more influential to suspended microbial assemblage structure than absolute glacier size, and improve our understanding of hydrological flowpaths, particulate entrainment, and transport

    Investigation of subglacial weathering under the Greenland Ice Sheet using silicon isotopes

    Get PDF
    Subglacial chemical weathering plays a key role in global silicate weathering budgets, contributing to the cycling of silicon (Si) in terrestrial and marine systems and the potential drawdown of carbon dioxide from the atmosphere. Here, we use data from two Greenland Ice Sheet (GrIS) catchments to demonstrate how Si isotopes from dissolved and amorphous particulate fractions (δ30DSi and δ30ASi respectively) can be used together with major ion data to assess the degree of secondary silicate weathering product formation and redissolution in subglacial environments. We compare a time-series of summer melt seasons from the two study sites, which differ in catchment size (∼600 km2 for Leverett Glacier (LG) and ∼36 km2 for Kiattuut Sermiat (KS)). Subglacial waters from LG have elevated Na+ and K+ ions in relation to Ca2+ and Mg2+ ions, indicating a predominance of silicate weathering, whilst meltwaters from KS are characterised by carbonate weathering (hydrolysis and carbonation) throughout the melt season. Both catchments have mean δ30DSi values substantially lower than average riverine values (KS 0.41‰, LG −0.25‰, versus a global riverine mean of 1.25‰) and display a seasonal decline, which is more pronounced at LG. The δ30ASi values (discharge weighted mean values KS −0.44‰, LG −0.22‰) are lighter than the bedrock (mean values KS −0.18 ± 0.12‰, LG 0.00 ± 0.07‰) in both catchments, indicating a secondary weathering product origin or leaching of lighter isotopes during initial weathering of crushed rock. When used in combination, the major ion and silicon isotope data reveal that the extent of silicate weathering and secondary phase redissolution are more pronounced at LG compared to KS. Contrasting weathering regimes and subglacial hydrology between catchments need to be considered when estimating the δ30Si composition of silica exported into polar oceans from the GrIS, with larger catchments likely to produce fluxes of lighter δ30Si. As larger catchments dominate freshwater export to the ocean, GrIS meltwater is likely to be very light in isotopic composition, and the flux is likely to increase with ice melt as the climate warms

    Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    Get PDF
    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere

    Glacier outflow dissolved organic matter as a window into seasonally changing carbon sources: Leverett Glacier, Greenland

    Get PDF
    The Greenland Ice Sheet is losing mass at a remarkable rate as a result of climatic warming. This mass loss coincides with the export of dissolved organic matter (DOM) in glacial meltwaters. However, little is known about how the source and composition of exported DOM changes over the melt season, which is key for understanding its fate in downstream ecosystems. Over the 2015 ablation season, we sampled the outflow of Leverett Glacier, a large land‐terminating glacier of the Greenland Ice Sheet. Dissolved organic carbon (DOC) concentrations and DOM fluorescence were analyzed to assess the evolution of DOM sources over the course of the melt season. DOC concentrations and red‐shifted fluorescence were highly associated (R2 > 0.95) and suggest terrestrial inputs from overridden soils dominated DOM early season inputs before progressive dilution with increasing discharge. During the outburst period, supraglacial drainage events disrupted the subglacial drainage system and introduced dominant protein‐like fluorescence signatures not observed in basal flow. These results suggest that subglacial hydrology and changing water sources influence exported DOC concentration and DOM composition, and these sources were differentiated using fluorescence characteristics. Red‐shifted fluorescence components were robust proxies for DOC concentration. Finally, the majority of DOM flux, which occurs during the outburst and postoutburst periods, was characterized by protein‐like fluorescence from supraglacial and potentially subglacial microbial sources. As protein‐like fluorescence is linked to the bioavailability of DOM, the observed changes likely reflect seasonal variations in the impact of glacial inputs on secondary production in downstream ecosystems due to shifting hydrologic regimes

    Algae drive enhanced darkening of bare ice on the Greenland ice sheet

    Get PDF
    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of non-algal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere
    corecore