667 research outputs found

    Owner Occupied Housing in the CPI and its Impact on Monetary Policy during Housing Booms and Busts

    Get PDF
    The treatment of owner-occupied housing (OOH) is probably the most important unresolved issue in inflation measurement. How -- and whether -- it is included in the Consumer Price Index (CPI) affects inflation expectations, the measured level of real interest rates, and the behavior of governments, central banks and market participants. We show that none of the existing treatments of OOH are fit for purpose. Hence we propose a new simplified user cost method with better properties. Using a micro-level dataset, we then compare the empirical behavior of eight different treatments of OOH. Our preferred user cost approach pushes up the CPI during housing booms (by 2 percentage points or more). Our findings relate to the following important debates in macroeconomics: the behavior of the Phillips curve in the US during the global financial crisis, and the response of monetary policy to housing booms, secular stagnation, and globalization.Series: Department of Economics Working Paper Serie

    A remark on the trace-map for the Silver mean sequence

    Full text link
    In this work we study the Silver mean sequence based on substitution rules by means of a transfer-matrix approach. Using transfer-matrix method we find a recurrence relation for the traces of general transfer-matrices which characterizes electronic properties of the quasicrystal in question. We also find an invariant of the trace-map.Comment: 5 pages, minor improvements in style and presentation of calculation

    Second harmonic generation on incommensurate structures: The case of multiferroic MnWO4

    Full text link
    A comprehensive analysis of optical second harmonic generation (SHG) on an incommensurate (IC) magnetically ordered state is presented using multiferroic MnWO4 as model compound. Two fundamentally different SHG contributions coupling to the primary IC magnetic order or to secondary commensurate projections of the IC state, respectively, are distinguished. Whereas the latter can be described within the formalism of the 122 commensurate magnetic point groups the former involves a breakdown of the conventional macroscopic symmetry analysis because of its sensitivity to the lower symmetry of the local environment in a crystal lattice. Our analysis thus foreshadows the fusion of the hitherto disjunct fields of nonlinear optics and IC order in condensed-matter systems

    Exercise-linked improvement in age-associated loss of balance is associated with increased vestibular input to motor neurons

    Get PDF
    Age-associated loss of muscle function is exacerbated by a concomitant reduction in balance, leading to gait abnormalities and falls. Even though balance defects can be mitigated by exercise, the underlying neural mechanisms are unknown. We now have investigated components of the proprioceptive and vestibular systems in specific motor neuron pools in sedentary and trained old mice, respectively. We observed a strong age-linked deterioration in both circuits, with a mitigating effect of exercise on vestibular synapse numbers on motor neurons, closely associated with an improvement in gait and balance in old mice. Our results thus describe how the proprioceptive and vestibular systems are modulated by age and exercise, and how these changes affect their input to motor neurons. These findings not only make a strong case for exercise-based interventions in elderly individuals to improve balance, but could also lead to targeted therapeutic interventions aimed at the respective neuronal circuitry

    The surface science of quasicrystals

    Get PDF
    The surfaces of quasicrystals have been extensively studied since about 1990. In this paper we review work on the structure and morphology of clean surfaces, and their electronic and phonon structure. We also describe progress in adsorption and epitaxy studies. The paper is illustrated throughout with examples from the literature. We offer some reflections on the wider impact of this body of work and anticipate areas for future development. (Some figures in this article are in colour only in the electronic version

    Hybrid photonic-bandgap accelerating cavities

    Full text link
    In a recent investigation, we studied two-dimensional point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely-high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes, and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental validations (at room and cryogenic temperatures) in the microwave region, identify the candidate parametric configurations capable of yielding the highest quality factor.Comment: 13 pages, 5 figures, 3 tables. One figure and one reference added; minor changes in the tex
    corecore