2,805 research outputs found
Floquet Analysis of Atom Optics Tunneling Experiments
Dynamical tunneling has been observed in atom optics experiments by two
groups. We show that the experimental results are extremely well described by
time-periodic Hamiltonians with momentum quantized in units of the atomic
recoil. The observed tunneling has a well defined period when only two Floquet
states dominate the dynamics. Beat frequencies are observed when three Floquet
states dominate. We find frequencies which match those observed in both
experiments. The dynamical origin of the dominant Floquet states is identified.Comment: Accepted in Physical Review
Narrow structure in the coherent population trapping resonances in rubidium and Rayleigh scattering
The measurement of the coherent-population-trapping (CPT) resonances in
uncoated Rb vacuum cells has shown that the shape of the resonances is
different in different cells. In some cells the resonance has a complex shape -
a narrow Lorentzian structure, which is not power broadened, superimposed on
the power broadened CPT resonance. The results of the performed investigations
on the fluorescence angular distribution are in agreement with the assumption
that the narrow structure is a result of atom interaction with Rayleigh
scattering light. The results are interesting for indication of the vacuum
cleanness of the cells and building of magnetooptical sensors
The structure of EAS at E 0.1 EeV
The ratio of extensive air showers (EAS) total shower energy in the electromagnetic channel (E em) to the size of the shower at maximum development (N max) from a direct measurement of shower longitudinal development using the air fluorescence technique was calculated. The values are not inconsistent with values based upon track length integrals of the Gaisser-Hillas formula for shower development or the known relation between shower energy and size at maximum for pure electromagnetic cascades. Using Linsley's estimates for undetected shower energy based on an analysis of a wide variety of cosmic ray data, the following relation for total shower energy E vs N max is obtained. The Gaisser Hillas implied undetected shower energy fractions
All sky Northern Hemisphere 10(15) EV gamma-ray survey
Flux limits in the range 10 to the minus 13th power-10 to the minus 12 power/sq cm/s have been obtained by observing Cerenkov flashes from small air showers. During 1983, a 3.5 sigma excess of showers was observed during the phase interval 0.2 to 0.3 of the 4.8h period of Cygnus X-3, but no excess was found in 1984 observations
Limits on deeply penetrating particles in the 10(17) eV cosmic ray flux
Deeply penetrating particles in the 10 to the 17th power eV cosmic ray flux were investigated. No such events were found in 8.2 x 10 to the 6th power sec of running time. Limits were set on the following: quark-matter in the primary cosmic ray flux; long-lived, weakly interacting particles produced in p-air collisions; the astrophysical neutrino flux. In particular, the neutrino flux limit at 10 to the 17th power eV implies that z, the red shift of maximum activity is 10 in the model of Hill and Schramm
Cranial and peripheral neuropathy due to leptomeningeal infiltration in a patient with Waldenstrom's macroglobulinemia
Hybrid apparatus for Bose-Einstein condensation and cavity quantum electrodynamics: Single atom detection in quantum degenerate gases
We present and characterize an experimental system in which we achieve the
integration of an ultrahigh finesse optical cavity with a Bose-Einstein
condensate (BEC). The conceptually novel design of the apparatus for the
production of BECs features nested vacuum chambers and an in-vacuo magnetic
transport configuration. It grants large scale spatial access to the BEC for
samples and probes via a modular and exchangeable "science platform". We are
able to produce \87Rb condensates of five million atoms and to output couple
continuous atom lasers. The cavity is mounted on the science platform on top of
a vibration isolation system. The optical cavity works in the strong coupling
regime of cavity quantum electrodynamics and serves as a quantum optical
detector for single atoms. This system enables us to study atom optics on a
single particle level and to further develop the field of quantum atom optics.
We describe the technological modules and the operation of the combined BEC
cavity apparatus. Its performance is characterized by single atom detection
measurements for thermal and quantum degenerate atomic beams. The atom laser
provides a fast and controllable supply of atoms coupling with the cavity mode
and allows for an efficient study of atom field interactions in the strong
coupling regime. Moreover, the high detection efficiency for quantum degenerate
atoms distinguishes the cavity as a sensitive and weakly invasive probe for
cold atomic clouds
Engineering Quantum States, Nonlinear Measurements, and Anomalous Diffusion by Imaging
We show that well-separated quantum superposition states, measurements of
strongly nonlinear observables, and quantum dynamics driven by anomalous
diffusion can all be achieved for single atoms or molecules by imaging
spontaneous photons that they emit via resonance florescence. To generate
anomalous diffusion we introduce continuous measurements driven by L\'evy
processes, and prove a number of results regarding their properties. In
particular we present strong evidence that the only stable L\'evy density that
can realize a strictly continuous measurement is the Gaussian.Comment: revtex4-1, 17 pages, 7 eps figure
- …
