325 research outputs found

    Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation

    Get PDF
    Prova tipográfica (In Press)An important question arising from previous observations in vivo is whether glucocorticoids can directly influence neuronal survival in the hippocampus. To this end, a primary postnatal hippocampal culture system containing mature neurons and expressing both glucocorticoid (GR) and mineralocorticoid (MR) receptors was developed. Results show that the GR agonist dexamethasone (DEX) targets neurons (microtubule-associated protein 2-positive cells) for death through apoptosis. GR-mediated cell death was counteracted by the MR agonist aldosterone (ALDO). Antagonism of MR with spironolactone ([7a-(acetylthio)-3-oxo-17a-pregn- 4-ene,21 carbolactone] (SPIRO)) causes a dose-dependent increase in neuronal apoptosis in the absence of DEX, indicating that nanomolar levels of corticosterone present in the culture medium, which are sufficient to activate MR, can mask the apoptotic response to DEX. Indeed, both SPIRO and another MR antagonist, oxprenoate potassium ((7a,17a)-17-Hydroxy-3-oxo-7- propylpregn-4-ene-21-carboxylic acid, potassium salt (RU28318)), accentuated DEX-induced apoptosis. These results demonstrate that GRs can act directly to induce hippocampal neuronal death and that demonstration of their full apoptotic potency depends on abolition of survival-promoting actions mediated by MR

    Functional definition of seizure provides new insight into post-traumatic epileptogenesis

    Get PDF
    Experimental animals’ seizures are often defined arbitrarily based on duration, which may lead to misjudgement of the syndrome and failure to develop a cure. We employed a functional definition of seizures based on the clinical practice of observing epileptiform electrocorticography and simultaneous ictal behaviour, and examined post-traumatic epilepsy induced in rats by rostral parasagittal fluid percussion injury and epilepsy patients evaluated with invasive monitoring. We showed previously that rostral parasagittal fluid percussion injury induces different types of chronic recurrent spontaneous partial seizures that worsen in frequency and duration over the months post injury. However, a remarkable feature of rostral parasagittal fluid percussion injury is the occurrence, in the early months post injury, of brief (<2 s) focal, recurrent and spontaneous epileptiform electrocorticography events (EEEs) that are never observed in sham-injured animals and have electrographic appearance similar to the onset of obvious chronic recurrent spontaneous partial seizures. Simultaneous epidural-electrocorticography and scalp-electroencephalography recordings in the rat demonstrated that these short EEEs are undetectable by scalp electrocorticography. Behavioural analysis performed blinded to the electrocorticography revealed that (i) brief EEEs lasting 0.8–2 s occur simultaneously with behavioural arrest; and (ii) while behavioural arrest is part of the rat's behavioural repertoire, the probability of behavioural arrest is greatly elevated during EEEs. Moreover, spectral analysis showed that EEEs lasting 0.8–2 s occurring during periods of active behaviour with dominant theta activity are immediately followed by loss of such theta activity. We thus conclude that EEEs lasting 0.8–2 s are ictal in the rat. We demonstrate that the assessment of the time course of fluid percussion injury-induced epileptogenesis is dramatically biased by the definition of seizure employed, with common duration-based arbitrary definitions resulting in artificially prolonged latencies for epileptogenesis. Finally, we present four human examples of electrocorticography capturing short (<2 s), stereotyped, neocortically generated EEEs that occurred in the same ictal sites as obvious complex partial seizures, were electrographically similar to rat EEEs and were not noted during scalp electroencephalography. When occurring in the motor cortex, these short EEEs were accompanied by ictal behaviour detectable with simultaneous surface electromyography. These data demonstrate that short (<2 s) focal recurrent spontaneous EEEs are seizures in both rats and humans, that they are undetectable by scalp electroencephalography, and that they are typically associated with subtle and easily missed behavioural correlates. These findings define the earliest identifiable markers of progressive post-traumatic epilepsy in the rat, with implications for mechanistic and prophylactic studies, and should prompt a re-evaluation of the concept of post-traumatic silent period in both animals and humans

    Adult and Embryonic GAD Transcripts Are Spatiotemporally Regulated during Postnatal Development in the Rat Brain

    Get PDF
    GABA (gamma-aminobutyric acid), the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD). GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream.Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or synaptogenesis is suggested

    Differential Susceptibility of Interneurons Expressing Neuropeptide Y or Parvalbumin in the Aged Hippocampus to Acute Seizure Activity

    Get PDF
    Acute seizure (AS) activity in old age has an increased predisposition for evolving into temporal lobe epilepsy (TLE). Furthermore, spontaneous seizures and cognitive dysfunction after AS activity are often intense in the aged population than in young adults. This could be due to an increased vulnerability of inhibitory interneurons in the aged hippocampus to AS activity. We investigated this issue by comparing the survival of hippocampal GABA-ergic interneurons that contain the neuropeptide Y (NPY) or the calcium binding protein parvalbumin (PV) between young adult (5-months old) and aged (22-months old) F344 rats at 12 days after three-hours of AS activity. Graded intraperitoneal injections of the kainic acid (KA) induced AS activity and a diazepam injection at 3 hours after the onset terminated AS-activity. Measurement of interneuron numbers in different hippocampal subfields revealed that NPY+ interneurons were relatively resistant to AS activity in the aged hippocampus in comparison to the young adult hippocampus. Whereas, PV+ interneurons were highly susceptible to AS activity in both age groups. However, as aging alone substantially depleted these populations, the aged hippocampus after three-hours of AS activity exhibited 48% reductions in NPY+ interneurons and 70% reductions in PV+ interneurons, in comparison to the young hippocampus after similar AS activity. Thus, AS activity-induced TLE in old age is associated with far fewer hippocampal NPY+ and PV+ interneuron numbers than AS-induced TLE in the young adult age. This discrepancy likely underlies the severe spontaneous seizures and cognitive dysfunction observed in the aged people after AS activity

    Fluorofluorophores: Fluorescent Fluorous Chemical Tools Spanning the Visible Spectrum

    Get PDF
    “Fluoro” refers to both fluorescent and fluorinated compounds. Despite the shared prefix, there are very few fluorescent molecules that are soluble in perfluorinated solvents. This paucity is surprising, given that optical microscopy is a ubiquitous technique throughout the physical sciences and the orthogonality of fluorous materials is a commonly exploited strategy in synthetic chemistry, materials science, and chemical biology. We have addressed this shortage by synthesizing a panel of “fluorofluorophores,” fluorescent molecules containing high weight percent fluorine with optical properties spanning the visible spectrum. We demonstrate the utility of these fluorofluorophores by preparing fluorescent perfluorocarbon nanoemulsions.National Science Foundation (U.S.) (ECCS-0939514

    No Differential Regulation of Dopamine Transporter (DAT) and Vesicular Monoamine Transporter 2 (VMAT2) Binding in a Primate Model of Parkinson Disease

    Get PDF
    Radioligands for DAT and VMAT2 are widely used presynaptic markers for assessing dopamine (DA) nerve terminals in Parkinson disease (PD). Previous in vivo imaging and postmortem studies suggest that these transporter sites may be regulated as the numbers of nigrostriatal neurons change in pathologic conditions. To investigate this issue, we used in vitro quantitative autoradioradiography to measure striatal DAT and VMAT2 specific binding in postmortem brain from 14 monkeys after unilateral internal carotid artery infusion of 1-Methyl-4-Phenyl-1,2,3,6-tetrahydropyridine (MPTP) with doses varying from 0 to 0.31 mg/kg. Quantitative estimates of the number of tyrosine hydroxylase (TH)-immunoreactive (ir) neurons in substantia nigra (SN) were determined with unbiased stereology, and quantitative autoradiography was used to measure DAT and VMAT2 striatal specific binding. Striatal VMAT2 and DAT binding correlated with striatal DA (rs = 0.83, rs = 0.80, respectively, both with n = 14, p<0.001) but only with nigra TH-ir cells when nigral cell loss was 50% or less (r = 0.93, n = 8, p = 0.001 and r = 0.91, n = 8, p = 0.002 respectively). Reduction of VMAT2 and DAT striatal specific binding sites strongly correlated with each other (r = 0.93, n = 14, p<0.0005). These similar changes in DAT and VMAT2 binding sites in the striatal terminal fields of the surviving nigrostriatal neurons demonstrate that there is no differential regulation of these two sites at 2 months after MPTP infusion

    Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex

    Get PDF
    We studied the distribution and coexpression of vesicular glutamate transporters (VGluT1, VGluT2), glutamic acid decarboxylase (GAD) and calretinin (CR, calcium-binding protein) in rat entorhinal cortex, using immunofluorescence staining and multichannel confocal laser scanning microscopy. Images were computer processed and subjected to automated 3D object recognition, colocalization analysis and 3D reconstruction. Since the VGluTs (in contrast to CR and GAD) occurred in fibers and axon terminals only, we focused our attention on these neuronal processes. An intense, punctate VGluT1-staining occurred everywhere in the entorhinal cortex. Our computer program resolved these punctae as small 3D objects. Also VGluT2 showed a punctate immunostaining pattern, yet with half the number of 3D objects per tissue volume compared with VGluT1, and with statistically significantly larger 3D objects. Both VGluTs were distributed homogeneously across cortical layers, with in MEA VGluT1 slightly more densely distributed than in LEA. The distribution pattern and the size distribution of GAD 3D objects resembled that of VGluT2. CR-immunopositive fibers were abundant in all cortical layers. In double-stained sections we noted ample colocalization of CR and VGluT2, whereas coexpression of CR and VGluT1 was nearly absent. Also in triple-staining experiments (VGluT2, GAD and CR combined) we noted coexpression of VGluT2 and CR and, in addition, frequent coexpression of GAD and CR. Modest colocalization occurred of VGluT2 and GAD, and incidental colocalization of all three markers. We conclude that the CR-containing axon terminals in the entorhinal cortex belong to at least two subpopulations of CR-neurons: a glutamatergic excitatory and a GABAergic inhibitory
    corecore