77 research outputs found
Decay of flux vacua to nothing
We construct instanton solutions describing the decay of flux
compactifications of a gauge theory by generalizing the Kaluza-Klein
bubble of nothing. The surface of the bubble is described by a smooth
magnetically charged solitonic brane whose asymptotic flux is precisely that
responsible for stabilizing the 4d compactification. We describe several
instances of bubble geometries for the various vacua occurring in a
Einstein-Maxwell theory namely, AdS_4 x S^2, R^{1,3} x S^2, and dS_4 x S^2.
Unlike conventional solutions, the bubbles of nothing introduced here occur
where a {\em two}-sphere compactification manifold homogeneously degenerates.Comment: 31 pages, 15 figure
Rapid Tunneling and Percolation in the Landscape
Motivated by the possibility of a string landscape, we reexamine tunneling of
a scalar field across single/multiple barriers. Recent investigations have
suggested modifications to the usual picture of false vacuum decay that lead to
efficient and rapid tunneling in the landscape when certain conditions are met.
This can be due to stringy effects (e.g. tunneling via the DBI action), or by
effects arising due to the presence of multiple vacua (e.g. resonance
tunneling). In this paper we discuss both DBI tunneling and resonance
tunneling. We provide a QFT treatment of resonance tunneling using the
Schr\"odinger functional approach. We also show how DBI tunneling for
supercritical barriers can naturally lead to conditions suitable for resonance
tunneling. We argue using basic ideas from percolation theory that tunneling
can be rapid in a landscape where a typical vacuum has multiple decay channels
and discuss various cosmological implications. This rapidity vacuum decay can
happen even if there are no resonance/DBI tunneling enhancements, solely due to
the presence of a large number of decay channels. Finally, we consider various
ways of circumventing a recent no-go theorem for resonance tunneling in quantum
field theory.Comment: 47 pages, 16 figures. Acknowledgements adde
Bubbles from Nothing
Within the framework of flux compactifications, we construct an instanton
describing the quantum creation of an open universe from nothing. The solution
has many features in common with the smooth 6d bubble of nothing solutions
discussed recently, where the spacetime is described by a 4d compactification
of a 6d Einstein-Maxwell theory on S^2 stabilized by flux. The four-dimensional
description of this instanton reduces to that of Hawking and Turok. The choice
of parameters uniquely determines all future evolution, which we additionally
find to be stable against bubble of nothing instabilities.Comment: 19 pages, 6 figure
Duality Cascade in Brane Inflation
We show that brane inflation is very sensitive to tiny sharp features in
extra dimensions, including those in the potential and in the warp factor. This
can show up as observational signatures in the power spectrum and/or
non-Gaussianities of the cosmic microwave background radiation (CMBR). One
general example of such sharp features is a succession of small steps in a
warped throat, caused by Seiberg duality cascade using gauge/gravity duality.
We study the cosmological observational consequences of these steps in brane
inflation. Since the steps come in a series, the prediction of other steps and
their properties can be tested by future data and analysis. It is also possible
that the steps are too close to be resolved in the power spectrum, in which
case they may show up only in the non-Gaussianity of the CMB temperature
fluctuations and/or EE polarization. We study two cases. In the slow-roll
scenario where steps appear in the inflaton potential, the sensitivity of brane
inflation to the height and width of the steps is increased by several orders
of magnitude comparing to that in previously studied large field models. In the
IR DBI scenario where steps appear in the warp factor, we find that the
glitches in the power spectrum caused by these sharp features are generally
small or even unobservable, but associated distinctive non-Gaussianity can be
large. Together with its large negative running of the power spectrum index,
this scenario clearly illustrates how rich and different a brane inflationary
scenario can be when compared to generic slow-roll inflation. Such distinctive
stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig
Stochastic Inflation Revisited: Non-Slow Roll Statistics and DBI Inflation
Stochastic inflation describes the global structure of the inflationary
universe by modeling the super-Hubble dynamics as a system of matter fields
coupled to gravity where the sub-Hubble field fluctuations induce a stochastic
force into the equations of motion. The super-Hubble dynamics are ultralocal,
allowing us to neglect spatial derivatives and treat each Hubble patch as a
separate universe. This provides a natural framework in which to discuss
probabilities on the space of solutions and initial conditions. In this article
we derive an evolution equation for this probability for an arbitrary class of
matter systems, including DBI and k-inflationary models, and discover
equilibrium solutions that satisfy detailed balance. Our results are more
general than those derived assuming slow roll or a quasi-de Sitter geometry,
and so are directly applicable to models that do not satisfy the usual slow
roll conditions. We discuss in general terms the conditions for eternal
inflation to set in, and we give explicit numerical solutions of highly
stochastic, quasi-stationary trajectories in the relativistic DBI regime.
Finally, we show that the probability for stochastic/thermal tunneling can be
significantly enhanced relative to the Hawking-Moss instanton result due to
relativistic DBI effects.Comment: 38 pages, 2 figures. v3: minor revisions; version accepted into JCA
Reconnection of Non-Abelian Cosmic Strings
Cosmic strings in non-abelian gauge theories naturally gain a spectrum of
massless, or light, excitations arising from their embedding in color and
flavor space. This opens up the possibility that colliding strings miss each
other in the internal space, reducing the probability of reconnection. We study
the topology of the non-abelian vortex moduli space to determine the outcome of
string collision. Surprisingly we find that the probability of classical
reconnection in this system remains unity, with strings passing through each
other only for finely tuned initial conditions. We proceed to show how this
conclusion can be changed by symmetry breaking effects, or by quantum effects
associated to fermionic zero modes, and present examples where the probability
of reconnection in a U(N) gauge theory ranges from 1/N for low-energy
collisions to one at higher energies.Comment: 25 Pages, 3 Figures. v2: comment added, reference adde
Decoration Increases the Conspicuousness of Raptor Nests
Avian nests are frequently concealed or camouflaged, but a number of species builds noticeable nests or use conspicuous materials for nest decoration. In most cases, nest decoration has a role in mate choice or provides thermoregulatory or antiparasitic benefits. In territorial species however, decorations may serve additional or complementary functions, such as extended phenotypic signaling of nest-site occupancy and social status to potential intruders. The latter may benefit both signaler and receiver by minimizing the risk of aggressive interactions, especially in organisms with dangerous weaponry. Support for this hypothesis was recently found in a population of black kites (Milvus migrans), a territorial raptor that decorates its nest with white artificial materials. However, the crucial assumption that nest decorations increased nest-site visibility to conspecifics was not assessed, a key aspect given that black kite nests may be well concealed within the canopy. Here, we used an unmanned aircraft system to take pictures of black kite nests, with and without an experimentally placed decoration, from different altitudes and distances simulating the perspective of a flying and approaching, prospecting intruder. The pictures were shown to human volunteers through a standardized routine to determine whether detection rates varied according the nest decoration status and distance. Decorated nests consistently showed a higher detection frequency and a lower detection-latency, compared to undecorated versions of the same nests. Our results confirm that nest decoration in this species may act as a signaling medium that enhances nest visibility for aerial receivers, even at large distances. This finding complements previous work on this communication system, which showed that nest decoration was a threat informing trespassing conspecifics on the social dominance, territory quality and fighting capabilities of the signaler
- …