10,549 research outputs found
Visual detection of point source targets
Visual detection of point source targets in simulated star field backgroun
SNS Timing System
This poster describes the timing system being designed for Spallation Neutron
Source being built at Oak Ridge National lab
Tracking excited states in wave function optimization using density matrices and variational principles
We present a method for finding individual excited states' energy stationary
points in complete active space self-consistent field theory that is compatible
with standard optimization methods and highly effective at overcoming
difficulties due to root flipping and near-degeneracies. Inspired by both the
maximum overlap method and recent progress in excited state variational
principles, our approach combines these ideas in order to track individual
excited states throughout the orbital optimization process. In a series of
tests involving root flipping, near-degeneracies, charge transfers, and double
excitations, we show that this approach is more effective for state-specific
optimization than either the naive selection of roots based on energy ordering
or a more direct generalization of the maximum overlap method. Furthermore, we
provide evidence that this state-specific approach improves the performance of
complete active space perturbation theory. With a simple implementation, a low
cost, and compatibility with large active space methods, the approach is
designed to be useful in a wide range of excited state investigations.Comment: 13 pages, submitted to JCT
Autonomous Deployment of a Solar Panel Using an Elastic Origami and Distributed Shape Memory Polymer Actuators
Deployable mechanical systems such as space solar panels rely on the
intricate stowage of passive modules, and sophisticated deployment using a
network of motorized actuators. As a result, a significant portion of the
stowed mass and volume are occupied by these support systems. An autonomous
solar panel array deployed using the inherent material behavior remains
elusive. In this work, we develop an autonomous self-deploying solar panel
array that is programmed to activate in response to changes in the surrounding
temperature. We study an elastic "flasher" origami sheet embedded in a circle
of scissor mechanisms, both printed with shape memory polymers. The scissor
mechanisms are optimized to provide the maximum expansion ratio while
delivering the necessary force for deployment. The origami sheet is also
optimized to carry the maximum number of solar panels given space constraints.
We show how the folding of the "flasher" origami exhibits a bifurcation
behavior resulting in either a cone or disk shape both numerically and in
experiments. A folding strategy is devised to avoid the undesired cone shape.
The resulting design is entirely 3D printed, achieves an expansion ratio of
1000% in under 40 seconds, and shows excellent agreement with simulation
prediction both in the stowed and deployed configurations.Comment: 12 pages, 12 figure
Exact results for a charged, harmonically trapped quantum gas at arbitrary temperature and magnetic field strength
An analytical expression for the first-order density matrix of a charged,
two-dimensional, harmonically confined quantum gas, in the presence of a
constant magnetic field is derived. In contrast to previous results available
in the literature, our expressions are exact for any temperature and magnetic
field strength. We also present a novel factorization of the Bloch density
matrix in the form of a simple product with a clean separation of the
zero-field and field-dependent parts. This factorization provides an
alternative way of analytically investigating the effects of the magnetic field
on the system, and also permits the extension of our analysis to other
dimensions, and/or anisotropic confinement.Comment: To appear in Phys. Rev.
3-dimensional electrode patterning within a microfluidic channel using metal ion implantation
The application of electrical fields within a microfluidic channel enables many forms of manipulation necessary for lab-on-a-chip devices. Patterning electrodes inside the microfluidic channel generally requires multi-step optical lithography. Here, we utilize an ion-implantation process to pattern 3D electrodes within a fluidic channel made of polydimethylsiloxane (PDMS). Electrode structuring within the channel is achieved by ion implantation at a 40° angle with a metal shadow mask. The advantages of three-dimensional structuring of electrodes within a fluidic channel over traditional planar electrode designs are discussed. Two possible applications are presented: asymmetric particles can be aligned in any of the three axial dimensions with electro-orientation; colloidal focusing and concentration within a fluidic channel can be achieved through dielectrophoresis. Demonstrations are shown with E. coli, a rod shaped bacteria, and indicate the potential that ion-implanted microfluidic channels have for manipulations in the context of lab-on-a-chip devices
Extragalactic Radio Sources and the WMAP Cold Spot
We detect a dip of 20-45% in the surface brightness and number counts of NVSS
sources smoothed to a few degrees at the location of the WMAP cold spot. The
dip has structure on scales of approximately 1-10 degrees. Together with
independent all-sky wavelet analyses, our results suggest that the dip in
extragalactic brightness and number counts and the WMAP cold spot are
physically related, i.e., that the coincidence is neither a statistical anomaly
nor a WMAP foreground correction problem. If the cold spot does originate from
structures at modest redshifts, as we suggest, then there is no remaining need
for non-Gaussian processes at the last scattering surface of the CMB to explain
the cold spot. The late integrated Sachs-Wolfe effect, already seen
statistically for NVSS source counts, can now be seen to operate on a single
region. To create the magnitude and angular size of the WMAP cold spot requires
a ~140 Mpc radius completely empty void at z<=1 along this line of sight. This
is far outside the current expectations of the concordance cosmology, and adds
to the anomalies seen in the CMB.Comment: revised version, ApJ, in pres
- …
