414 research outputs found

    Vacuum polarization induced by a uniformly accelerated charge

    Get PDF
    We consider a point charge fixed in the Rindler coordinates which describe a uniformly accelerated frame. We determine an integral expression of the induced charge density due to the vacuum polarization at the first order in the fine structure constant. In the case where the acceleration is weak, we give explicitly the induced electrostatic potential.Comment: 13 pages, latex, no figures, to appear in Int. J. Theor. Phys

    Theoretical high energy physics. Renewal proposal and research report, October 1, 1975--September 30, 1976

    Full text link
    Research on nuclear, atomic, and high energy physics is summarized. A list of publications is included. (JFP

    Nuclear Reactions of Arsenic with 190-Mev Deuterons

    Full text link

    Projectile fragmentation of 129Xe at Elab=790 AMeV

    Full text link
    We have measured production yields and longitudinal momentum distributions of projectile-like fragments in the reaction 129Xe + 27Al at an energy of Elab=790 AMeV. Production cross sections higher than expected from systematics were observed for nuclei in the neutron-deficient tails of the isotopic distributions. A comparison with previously measured data from the fragmentation of 136Xe ions shows that the production yields strongly depend on the neutron excess of the projectile with respect to the line of beta-stability. The momentum distributions exhibit a dependence on the fragment neutron-to-proton ratio in isobaric chains, which was not expected from systematics so far. This can be interpreted by a higher excitation of the projectile during the formation of neutron-deficient fragments.Comment: 21 pages, 8 figures, 1 tabl

    Scaling and Interference in the Dissociation of Halo Nuclei

    Get PDF
    The dissociation of halo nuclei through their collision with light and heavy targets is considered within the Continuum Discretized Coupled Channels theory. We study the one-proton halo nucleus 8^8B and the one-neutron halo nucleus 11^{11}Be, as well as the more normal 7^7Be. The procedure previously employed to extract the Coulomb dissociation cross section by subtracting the nuclear one is critically assessed, and the scaling law usually assumed for the target mass dependence of the nuclear breakup cross section is also tested. It is found that the nuclear breakup cross section for these very loosely bound nuclei does indeed behave as a+bA1/3a+bA^{1/3}. However, it does not have the geometrically inspired form of a circular ring which seems to be the case for normal nuclei such as 7^{7}Be. We find further that we cannot ignore Coulomb-nuclear interference effects, which may be constructive or destructive in nature, and so the errors in previously extracted B(E1) using the subtraction procedure are almost certainly underestimated.Comment: version submitted to PRL + minor text change

    Vacuum polarization calculations for hydrogenlike and alkalilike ions

    Full text link
    Complete vacuum polarization calculations incorporating finite nuclear size are presented for hydrogenic ions with principal quantum numbers n=1-5. Lithiumlike, sodiumlike, and copperlike ions are also treated starting with Kohn-Sham potentials, and including first-order screening corrections. In both cases dominant Uehling terms are calculated with high accuracy, and smaller Wichmann- Kroll terms are obtained using numerical electron Green's functions.Comment: 23 pages, 1 figur

    Effective one-band electron-phonon Hamiltonian for nickel perovskites

    Full text link
    Inspired by recent experiments on the Sr-doped nickelates, La2xSrxNiO4La_{2-x}Sr_xNiO_4, we propose a minimal microscopic model capable to describe the variety of the observed quasi-static charge/lattice modulations and the resulting magnetic and electronic-transport anomalies. Analyzing the motion of low-spin (s=1/2) holes in a high-spin (S=1) background as well as their their coupling to the in-plane oxygen phonon modes, we construct a sort of generalized Holstein t-J Hamiltonian for the NiO2NiO_2 planes, which contains besides the rather complex ``composite-hole'' hopping part non-local spin-spin and hole-phonon interaction terms.Comment: 12 pages, LaTeX, submitted to Phys. Rev.

    Renormalization and asymptotic expansion of Dirac's polarized vacuum

    Full text link
    We perform rigorously the charge renormalization of the so-called reduced Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based on the Dirac operator, describes atoms and molecules while taking into account vacuum polarization effects. We consider the total physical density including both the external density of a nucleus and the self-consistent polarization of the Dirac sea, but no `real' electron. We show that it admits an asymptotic expansion to any order in powers of the physical coupling constant \alphaph, provided that the ultraviolet cut-off behaves as \Lambda\sim e^{3\pi(1-Z_3)/2\alphaph}\gg1. The renormalization parameter $

    ARID1a-DNA Interactions Are Required for Promoter Occupancy by SWI/SNF

    Get PDF
    Every known SWI/SNF chromatin-remodeling complex incorporates an ARID DNA binding domain-containing subunit. Despite being a ubiquitous component of the complex, physiological roles for this domain remain undefined. Here, we show that disruption of ARID1a-DNA binding in mice results in embryonic lethality, with mutant embryos manifesting prominent defects in the heart and extraembryonic vasculature. The DNA binding-defective mutant ARID1a subunit is stably expressed and capable of assembling into a SWI/SNF complex with core catalytic properties, but nucleosome substrate binding and promoter occupancy by ARID1a-containing SWI/SNF complexes (BAF-A) are impaired. Depletion of ARID domain-dependent, BAF-A associations at THROMBOSPONDIN 1 (THBS1) led to the concomitant upregulation of this SWI/SNF target gene. Using a THBS1 promoter-reporter gene, we further show that BAF-A directly regulates THBS1 promoter activity in an ARID domain-dependent manner. Our data not only demonstrate that ARID1a-DNA interactions are physiologically relevant in higher eukaryotes but also indicate that these interactions facilitate SWI/SNF binding to target sites in vivo. These findings support the model wherein cooperative interactions among intrinsic subunit-chromatin interaction domains and sequence-specific transcription factors drive SWI/SNF recruitment

    Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions

    Full text link
    The production of heavy nuclides from the spallation-evaporation reaction of 238U induced by 1 GeV protons was studied in inverse kinematics. The evaporation residues from tungsten to uranium were identified in-flight in mass and atomic number. Their production cross-sections and their momentum distributions were determined. The data are compared with empirical systematics. A comparison with previous results from the spallation of 208Pb and 197Au reveals the strong influence of fission in the spallation of 238U.Comment: 20 pages, 10 figures, background information at http://www-wnt.gsi.de/kschmidt
    corecore