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Abstract

The dissociation of halo nuclei through their collision with light and heavy targets is considered within the continuum discretized coupled
channels theory. We study the one-proton halo nucleus 8B and the one-neutron halo nucleus 11Be, as well as the more normal 7Be. The procedure
previously employed to extract the Coulomb dissociation cross section by subtracting the nuclear one is critically assessed, and the scaling law
usually assumed for the target mass dependence of the nuclear breakup cross section is also tested. It is found that the nuclear breakup cross

section for halo nuclei scales with the mass of the target as A
1/3
T

. However, it does not follow the same geometrical dependence found in non-halo

nuclei such as 7Be. We find further that we cannot ignore Coulomb-nuclear interference effects, which may be constructive or destructive in
nature, and so the errors in previously extracted B(E1) using the subtraction procedure are almost certainly underestimated.
© 2006 Elsevier B.V.
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The study of electromagnetic dissociation of halo nuclei is
an important area that supplies invaluable information about
their multipole responses and consequently the details of their
structure [1,2]. The theory usually employed for the pur-
pose is the relativistic Coulomb excitation theory developed
by Winther and Alder [1,3] which hinges on the Fermi–
Weiszäcker–Williams (FWW) virtual photon method. Since
the measurement of the dissociation cross section supplies the
combined Coulomb and nuclear contributions, one is forced
to subtract the latter. The common prescription employed for
this subtraction procedure is the so-called scaling law: the nu-
clear breakup cross section should scale linearly with the radius
of the target, and thus by measuring the cross section for the
breakup of the halo nucleus in the predominantly nuclear field
of a light target, one attempts to extrapolate to heavy targets
assuming the validity of the scaling law. The Coulomb disso-
ciation cross section for the halo nucleus on the heavy target
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is then simply obtained by subtracting from the experimental
cross section an extrapolated nuclear one calculated accord-
ing to some prescription. It is this “nuclear-free” cross section
which is fitted by the FWW result in order to extract the B(EL)
distribution [4–17].

Two factors convinced us to critically assess this procedure.
Several theorists [18–23] have recently cast doubt on the rel-
ative importance of the nuclear contribution to the dissocia-
tion cross section, claiming in some cases that this contribution
can be significantly larger than the Coulomb contribution in as
heavy a target as lead, invalidating the scaling law. The second
important factor is the need to supply a quantitative assessment
of the Coulomb-nuclear interference terms in the cross section.

The purpose of this Letter is to settle these issues by per-
forming a full continuum discretized coupled channels calcula-
tion for 8B, 11Be and 7Be dissociations in the fields of light-,
medium- and heavy-mass targets at three laboratory energies
where data are available.

Coupled channels calculations were therefore performed to
calculate the elastic breakup (also called diffraction dissocia-
tion) arising in a three-body model consisting of a two-body
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Table 1
Optical and binding potential parameters for 8B and 11Be projectiles

Pair V

MeV
r0
fm

a

fm
W

MeV
ri
fm

ai

fm

p + T 46.979 1.17 0.75 6.98 1.32 0.60
7Be + T 114.2 1.0 0.85 9.44 1.30 0.81
n + T 37.14 1.17 0.75 8.12 1.26 0.58
10Be + T 46.92 1.204 0.53 23.5 1.33 0.53

n + 10Be 51.51 1.39 0.52
partial waves pdf 28.38 1.39 0.52 Vso rso aso
p + 7Be 44.675 1.25 0.52 4.9 1.25 0.52

projectile incident on an inert target [24,25]. Between the target
and each of the two projectile components we specify optical
potentials whose imaginary parts describe the loss of flux to
channels beyond elastic breakup. Clearly all higher order ef-
fects are taken into account in our calculation.

For both 8B and 11Be, projectile states were included for
relative motion up to partial waves �max = 3 and energy εmax =
10 MeV. This energy range was divided into 20 bins when � = 0
for 8B and when � = 0,1 for 11Be. There were 10 bins when
� = 1,2 for 8B and � = 2 for 11Be, and 5 bins in the remaining
partial waves, all evenly spaced in momentum k. The coupled
channels for the scattering of the projectile on the target were
solved up to Rmax = 500 fm, and for partial waves up to KRmax
where K is the wave number for the incident beam. The optical
potentials have the same parameters for all energies, as given in
Table 1, using radii calculated with an A1/3 contribution from
the target mass number. We thus impose a regular target scaling
in the radial geometry of the component-target potentials, in
order to examine the contributions from varying target size and
varying dynamical conditions.

The results of the integrated nuclear breakup cross sections
obtained from the CDCC calculations are shown in Fig. 1: cir-
cles and squares for 8B at Elab = 44 and 70 MeV/n respec-
tively, left-triangle, down-triangle and right triangle for 11Be at
Elab = 44, 70, and 200 MeV/n respectively, and full diamonds
for 7Be at 100 MeV/n (after [26]). These are plotted as func-
tions of the cubic root of the mass of the target nucleus, which
is proportional to the target’s radius.

Since the total reaction cross section is given by σR =
π/k2 ∑

l=0(2l + 1)Tl , where Tl is the transmission coefficient
and k is the wave number of relative motion, we first derive
an estimate of the contribution σD of direct reactions in σR . We
find this as σD = π/k2[∑Lg+Δ/2

(2l +1)−∑Lg−Δ/2
(2l +1)],

where Δ measures the width in angular momentum space where
these peripheral reactions reside, and a step function for Tl is
assumed for simplicity. We get immediately σD = π/k2[(Lg +
Δ/2)2 − (Lg − Δ/2)2]. Since for the heavy ion systems and
energies under discussion, Lg � Δ, we find

(1)σD = 2π

k2
Δ . Lg.

It is expected on general simple physical arguments that Δ

behaves as Δ = ka, where a is a length parameter that gener-
ally depends on the bombarding energy. In fact, more detailed
analysis based on the Glauber-eikonal model for Tl , which re-
Fig. 1. Elastic nuclear breakup cross section for 8B, 11Be and 7Be projectiles
at the indicated energies, as a function of target mass number AT , along with
linear fits.

lates it to the medium-modified nucleon–nucleon cross section
[27], clearly identifies a small energy dependence of a. The
grazing angular momentum Lg behaves as Lg = k(RP + RT ),
where RP + RT is the sum of the projectile and target radii.
Accordingly, we have

(2)σD = 2πa(RP + RT ).

With the same approximation for Tl , the total reaction cross
section containing both central and peripheral processes comes
as usual out to be

(3)σR = π

k2
(Lg + 1)2 � π

k2
L2

g

or

(4)σR = π(RP + RT )2.

It is thus clear that while σR scales as the surface area of a cir-
cular disk whose radius is the sum of the radii of the interacting
nuclei, σD , on the other hand, scales as the radius of this disc. It
thus represents a circular ring of width a. This is the scaling law
believed to be operative for peripheral reactions [27,28], and is
also exactly the Serber model [29] for nuclear breakup, previ-
ously employed by Kobayashi et al. [30] to analyse 11Li dis-
sociation. It is also the basis of several previous analyses [4] of
the breakup of one-neutron halo nuclei such 19C. Note that both
Eqs. (3), (4), which do not show explicit energy-dependence,
are based on a geometrical model of Tl . More detailed analyses
[31] based on the Glauber-eikonal model for Tl , which relate
them to the medium-modified nucleon–nucleon cross section,
clearly identify the quite important energy dependence of both
σD and σR , but that dependence is not the subject of this Letter.

Guided by Eq. (2) above, and using RT = r0A
1/3
T , we there-

fore anticipate the following form for the nuclear breakup cross
section:

(5)σN = P1 + P2A
1/3
T ,
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where the parameters P1 and P2 (with units of mb) depend on
the projectile and the structure of the target. They may also de-
pend on the bombarding energy in accord with Glauber-eikonal
models (see discussion above and [27]). We performed linear
fits to the CDCC nuclear breakup cross sections as a function
of A1/3 to obtain the P1 and P2 shown in the legend of Fig. 1.

The nuclear breakup cross section calculated with CDCC for
8B and 11Be do show approximately the A

1/3
T dependence of

Eq. (5) as seen in Fig. 1 but do not always follow the form given
by Eq. (2), in particular as, in most cases, the fits have P1 < 0.
The quality of the fit deteriorates considerably for 11Be + 208Pb
at 44 MeV/n, possibly because of the lower energy involved
and the potential influence of the bound excited 1/2− state in
the nuclear breakup at this energy. We should mention that our
results disagree completely with those of [20], where the nu-
clear breakup cross section was found to scale as AT . (In fact
such a behaviour could only be possibly true for a very weakly
interacting system where the whole volume of the target could
be effective.)

By comparison, scaling holds for 7Be, a normal non-halo nu-
cleus, and Eq. (2) is fully satisfied with both P1 and P2 positive.
The different behaviour in the nuclear scaling of 8B and 11Be
could well be a manifestation of their halo nature.

The fact that the nuclear cross sections do not exactly sat-
isfy Eq. (5) with P1 proportional to the radius of the projec-
tile leads us to conclude that for accurate estimates of nuclear
breakup we must use realistic dynamical models, not simply
Eq. (5). As well as the present CDCC model, eikonal-Glauber
or time-dependent few-body procedures can be used, as done in
Refs. [32–36], but as these make adiabatic (sudden) approxima-
tions about nuclear breakup and/or first-order approximations
for Coulomb breakup, we use our all-order CDCC calculations
for reference purposes.

The analysis of experimental data [34–36] started with the
following expression for the breakup cross section:

(6)
dσ

dE∗ = S
dσC

dE∗ + L(AT )
dσ(12C)

dE∗ ,

where S is the ground state spectroscopic factor, E∗ is the exci-
tation energy. The dσC/dE∗ is from the Coulomb FWW virtual
photon formula, and the dσ(12C)/dE∗ is what is observed for
a 12C target. The L(AT ) is a scaling factor, which may be de-
termined either by fitting Eq. (6) to the data, exploiting the
different shapes of the excitation spectra, or by calculating

(7)L(AT ) = σ th
N (AT )/σ th

N (12)

using eikonal-Glauber calculations of nuclear breakup σ th
N (AT ).

The 12C is simply a reference nucleus, and we can correct if
necessary for the small Coulomb breakup it gives. Of course
the above incoherent sum ignores completely Coulomb-nuclear
interference effects, which we discuss further below.

In [34,35] the reaction 11Be + 208Pb at E = 520 MeV/n
is considered. By adjusting S and L, these authors obtain
L(208) = 5.6 ± 0.4. This is close to our value of L, which can
be extracted from Fig. 1 at E = 200 MeV/n, namely L = 5.9.
Our results also agree with the eikonal-Glauber calculations of
[37]. In fact, at E = 200 MeV/n, it has been further confirmed
to us [38] that within the eikonal formalism of [37], the value
of L comes out about 5.5, very close to our model result.

On the other hand, using the same incoherent cross section
formulae, Ref. [36] analyses the reaction 11Be + 208Pb at E =
70 MeV/n. These authors found for L the value 2.1 ± 0.5, in
accordance with the Serber model they used, which is a basis
of the geometrical formula, Eq. (2), but much smaller than our
result L = 3.55 (Fig. 1). We have, however, already shown that
Eq. (2) is not valid for at least some halo nuclei. The reason for
this discrepancy may reside in the neglect of the interference
terms, which we see next can be rather large.

The Coulomb and nuclear potentials combine together co-
herently to give breakup, and the destructive interference be-
tween these potentials in the surface region is well known.
If, however, the nuclear and Coulomb breakup cross sections
could contribute largely to different partial waves, then the total
breakup cross sections will add incoherently and Eq. (6) should
be accurate.

In order to answer this question definitively at least in our
test cases, we have performed further CDCC breakup calcula-
tions with both Coulomb and nuclear transition potentials as in
[39,40], along with sufficient radial and partial wave limits to
encompass all the resulting breakup cross sections. For refer-
ence we also performed ‘Coulomb only’ calculations, where
there are no nuclear potentials at all in the transition opera-
tor. Coulomb-nuclear interference has already been examined
in [32,33], but with a different motivation and using approxi-
mations applicable only in the high energy limit.

Experimentalists (e.g., [17]) often try to minimise inter-
ference problems by restrictions to small excitation energies,
and/or to large impact parameters. We focus on the impact para-
meter restrictions, implemented by means of a maximum angle
θmax for integrating the cross sections over the centre of mass
angle of the projectile fragments. Within semiclassical theory,
this angle is related to bmin by θmax = 2η/(kbmin). We there-
fore use the same restrictions on our calculated breakup cross
sections.

The combined Coulomb and nuclear calculation gives a total

(8)σCN = σC + σN + σI

which defines an interference term σI by the difference with the
sum of Coulomb-only and nuclear-only calculations. We have
found that σI is sometimes negative (destructive interference),
sometimes positive (constructive interference), and often large.
Thus, although one can construct σN from some scaling model,
the mere subtraction of it from the data would give a “contami-
nated” Coulomb breakup cross section:

(9)σ̂C = σC + σI = σCN − σN .

The use of, say, the equivalent photon method as done in
[4,5] to extract the B(E1) distribution for, e.g., 8B and 11Be
could be questionable if σI is large. To ascertain typical sizes
of σI , we first show in Fig. 2(a)–(c) the cross sections, σC , σN

and σCN as the short dashed, long dashed and solid lines re-
spectively, for the 11Be and 8B at Elab = 44 MeV/n, and 7Be at
Elab = 100 MeV/n, using θmax corresponding to bmin = 20 fm
in each case.
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Fig. 2. Total breakup, Coulomb only, and nuclear only contributions for (a) 11Be, (b) 7Be, both at 44 MeV/n, and (c) 7Be at 100 MeV/n, as a function of A
1/3
T

. All
results use scattering angle limits θmax corresponding semiclassically to bmin = 20 fm.
Fig. 3. Ratios of the true to the contaminated Coulomb breakup cross sections
σC/σ̂C = σC/(σCN − σN ) as a function of the lower radial cutoff bmin, for
four different targets. Results for 8B are shown in the upper panel, and for 11Be
in the lower panel.

To see this, in Fig. 2 we plot as the dot-dashed line the val-
ues of σCN − σN , which should ‘ideally’ agree with σC as the
short dashed line. We also plot as the dotted line the incoher-
ent sum σC + σN , whose difference from the σCN solid line
indicates the effects of interference. It is evident that, for large
AT , the interference term is destructive for 8B (the solid line
σCN < σC+N dotted line), so its neglect may lead to unrealisti-
cally smaller B(E1) distributions. Conversely, it is constructive
for 11Be, yielding an unrealistically larger B(E1).

In Fig. 3 we show the ratios of the ‘true’ to ‘contaminat-
ed’ Coulomb breakup cross sections σC/σ̂C = σC/(σCN − σN)

as a function of the lower radial cutoff bmin. Ideally the ratios
should be unity, but in fact we see that rarely do these values
even tend to unity for large bmin. Only for the 8B projectile on
208Pb does this occur, and the deviations from unity are worse
in the 11Be case. These deviations from unity indicate either
that the long tail of the 11Be ground state wave function gives
rise to small but significant deviations from the pure Coulomb
results even at impact parameters � 30 fm, or that diffraction
effects are large enough to break the semiclassical connection
between bmin and θmax. Equivalent plots for the 7Be projectile
(not shown) give ratios far from unity, from diffraction or re-
fraction causing nuclear breakup fragments to come out at very
forward angles, implying that there is no ‘safe’ angular region
where Coulomb effects dominate [26]. In general, it is clear
that theoretical breakup calculations of Coulomb-nuclear inter-
ference are needed for accurate results for the breakup of 11Be
and 7Be on any target.

In conclusion, we have given evidence through detailed
CDCC calculations of the scaling behaviour of the nuclear
breakup cross section. This cross section does approximately
scale as A

1/3
T , the mass number of the target nucleus, but the

scaling does not follow the geometrical form as in normal nu-
clei. The nuclear contribution can be as small as 1/15 of the val-
ues calculated in Refs. [18–20]. We have further calculated the
“error” due to the nuclear-Coulomb interference in the extracted
B(E1) distribution if the subtraction σCN − σN is employed in
conjunction with the virtual photon method. We believe that
a full quantum calculation, including both Coulomb and nu-
clear potentials on equal footing, such as CDCC, is required to
get credible numbers for the B(E1) distribution of neutron- and
proton-rich (as well as some stable) nuclei.
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