704 research outputs found

    Frontiers of beam diagnostics in plasma accelerators: measuring the ultra-fast and ultra-cold

    Get PDF
    Advanced diagnostics are essential tools in the development of plasma-based accelerators. The accurate measurement of the quality of beams at the exit of the plasma channel is crucial to optimize the parameters of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly complex due to large energy spread and divergence of the emerging beams, and on femtosecond bunch length measurements

    TM oxides coatings for high demanding accelerator components

    Get PDF
    Large electric gradients are required for a variety of new applications, notably including the extreme high brightness electron sources for X-ray free electron lasers (FELs), RF photoinjector, industrial and medical accelerators and linear accelerators for particle physics colliders. In the framework of a INFN-LNF, SLAC (USA), KEK (Japan), UCLA (Los Angeles) collaboration, the Laboratori Nazionali di Frascati (LNF) is involved in the modelling, development and test of RF structures devoted to acceleration with high gradient electric field of particles through metal device. In order to improve the maximum sustainable gradients in normal conducting RF accelerating structures, we had to minimize the breakdown and the dark current. To this purpose the study of new materials and manufacturing techniques is mandatory to identify solutions to such extremely demanding applications. We considered the possibility to coat copper (and other metals) with a relatively thick film to improve and optimize breakdown performances. We present here the first characterization of MoO3 films deposited on copper by pulsed-laser deposition (PLD) starting from a commercial MoO3 target

    Beam manipulation for resonant plasma wakefield acceleration

    Get PDF
    Plasma-based acceleration has already proved the ability to reach ultra-high accelerating gradients. However the step towards the realization of a plasma-based accelerator still requires some e ff ort to guarantee high brightness beams, stability and reliability. A significant improvement in the efficiency of PWFA has been demonstrated so far accelerating a witness bunch in the wake of a higher charge driver bunch. The transformer ratio, therefore the energy transfer from the driver to the witness beam, can be increased by resonantly exciting the plasma with a properly pre-shaped drive electron beam. Theoretical and experimental studies of beam manipulation for resonant PWFA will be presented her

    Longitudinal phase-space manipulation with beam-driven plasma wakefields

    Full text link
    The development of compact accelerator facilities providing high-brightness beams is one of the most challenging tasks in field of next-generation compact and cost affordable particle accelerators, to be used in many fields for industrial, medical and research applications. The ability to shape the beam longitudinal phase-space, in particular, plays a key role to achieve high-peak brightness. Here we present a new approach that allows to tune the longitudinal phase-space of a high-brightness beam by means of a plasma wakefields. The electron beam passing through the plasma drives large wakefields that are used to manipulate the time-energy correlation of particles along the beam itself. We experimentally demonstrate that such solution is highly tunable by simply adjusting the density of the plasma and can be used to imprint or remove any correlation onto the beam. This is a fundamental requirement when dealing with largely time-energy correlated beams coming from future plasma accelerators

    Focusing of high-brightness electron beams with active-plasma lenses

    Get PDF
    Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. By overcoming current limits of conventional accelerators and pushing particles to larger and larger energies, the availability of strong and tunable focusing optics is mandatory also because plasma-accelerated beams usually have large angular divergences. In this regard, active-plasma lenses represent a compact and affordable tool to generate radially symmetric magnetic fields several orders of magnitude larger than conventional quadrupoles and solenoids. However, it has been recently proved that the focusing can be highly nonlinear and induce a dramatic emittance growth. Here, we present experimental results showing how these nonlinearities can be minimized and lensing improved. These achievements represent a major breakthrough toward the miniaturization of next-generation focusing devices

    Temperature analysis in the shock waves regime for gas-filled plasma capillaries in plasma-based accelerators

    Get PDF
    Plasma confinement represents a crucial point for plasma-based accelerators and plasma lenses because it can strongly affect the beam properties. For this reason, an accurate measurement of the plasma parameters, as plasma temperature, pressure and electron density, must be performed. In this paper, we introduce a novel method to detect the plasma temperature and the pressure for gas-filled capillaries in use at the SPARC-LAB test facility. The proposed method is based on the shock waves produced at the ends of the capillary during the gas discharge and the subsequent plasma formation inside it. By measuring the supersonic speed of the plasma outflow, the thermodynamic parameters have been obtained both outside and inside the capillary. A plasma temperature around 1.4 eV has been measured, that depends on the geometric properties and the operating conditions of the capillary

    Overview of Plasma Lens Experiments and Recent Results at SPARC_LAB

    Get PDF
    Beam injection and extraction from a plasma module is still one of the crucial aspects to solve in order to produce high quality electron beams with a plasma accelerator. Proper matching conditions require to focus the incoming high brightness beam down to few microns size and to capture a high divergent beam at the exit without loss of beam quality. Plasma-based lenses have proven to provide focusing gradients of the order of kT/m with radially symmetric focusing thus promising compact and affordable alternative to permanent magnets in the design of transport lines. In this paper an overview of recent experiments and future perspectives of plasma lenses is reported

    Intraoperative ultrasound for prediction of hepatocellular carcinoma biological behavior : prospective comparison with pathology

    Get PDF
    Background & Aims Preoperative prediction of both microinvasive hepatocellular carcinoma and histological grade of hepatocellular carcinoma is pivotal to treatment planning and prognostication. The aim of this study was to evaluate whether some intraoperative ultrasound features correlate with both the presence of same histological patterns and differentiation grade of hepatocellular carcinoma on the histological features of the primary resected tumour. Methods All patients with single, small hepatocellular carcinoma that underwent hepatic resection were included in this prospective double-blind study: the intraoperative ultrasound patterns of nodule were registered and compared with similar histological features. Results A total of 179 patients were enclosed in this study: 97 (54%) patients (34% in HCC 642 cm) had a microinvasive hepatocellular carcinoma at ultrasound examination, while 82 (46%) patients (41% in HCC 642 cm) at histological evaluation. Statistical analysis showed that diameters 642 cm, presence of satellites and microinvasive hepatocellular carcinoma at ultrasound examination were the variables with the strongest association with the histological findings. In the multivariate analysis, the vascular microinfiltration and infiltrative hepatocellular carcinoma aspect were independent predictors for grading. Conclusions In patients with cirrhosis and hepatocellular carcinoma, the prevalence of microinvasive hepatocellular carcinoma is high, even in cases of HCC 642 cm. Intraoperative ultrasound findings strongly correlated with histopathological criteria in detecting microinvasive patterns and are useful to predict neoplastic differentiation. The knowledge of these features prior to treatment are highly desired (this can be obtained by an intraoperative ultrasound examination), as they could help in providing optimal management of patients with hepatocellular carcinoma
    • …
    corecore